Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Current-Tunneling Measurements Analyze Single DNA Molecules

By LabMedica International staff writers
Posted on 09 Jul 2018
A team of Japanese genomics researchers has devised a method for cancer diagnosis, which is based on the analysis of single molecules of DNA without the need for chemical modification or amplification.

Cancer can be diagnosed by identifying DNA and microRNA base sequences that have the same base length yet differ in a few base sequences, if the abundance ratios of these slightly deviant base sequences can be determined. More...
However, such quantitative analyses cannot be performed using the current DNA sequencers.

In this regard, investigators at Osaka University (Japan) used current-tunneling measurements to determine the entire base sequences of four types of DNA corresponding to the let-7 microRNA, which is a 22-base cancer marker.

The tunneling currents flowing through single molecules were measured by gold electrodes – maintained at a distance of 0.75 nanometers from each other, equivalent to the size of a DNA base molecule – using a mechanically controllable break-junction. Single-molecule signals were obtained in forms of current spikes, whose height represented the electron transport through the molecule. Since this method measured single molecules, it did not require chemical modification of DNA or amplification by PCR.

As the method measured individual DNA molecules, two or more base sequences could be determined by measuring a solution of DNA molecules with two or more types of base sequences. Furthermore, since this method could count the number of DNA molecules that contained a specific base sequence, quantitative analysis could detect the base sequences and determine their frequency.

"Because the single-molecule sequencing method detects differences in the electronic states of molecules in terms of single-molecule conductances, it may also be applied to the analysis of microRNA and RNA molecules that include four base molecules and peptides that include 20 kinds of amino acids," said senior author Dr. Masateru Taniguchi, a professor in the institute of scientific and industrial research at Osaka University. "Also, as the method can detect chemically modified base molecules and amino acids, it represents a substantive step toward realizing personalized genomic diagnosis of cancer and other diseases."

The current-tunneling method was described in a paper published in the June 4, 2018, online edition of the journal Scientific Reports.

Related Links:
Osaka University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gel Cards
DG Gel Cards
New
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.