We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Microhole Chip Rapidly Identifies Tumor Cells

By LabMedica International staff writers
Posted on 22 Jun 2017
The higher the concentration of tumor cells in the bloodstream, the greater the risk of metastasis. More...
The number of circulating tumor cells indicates how well a patient is responding to therapy.

A new microhole chip has been developed that enables cells to be identified and characterized reliably within minutes. The conventional method of fluorescence-activated cell sorting (FACS analysis) provides only a rough estimate of the number of tumor cells circulating in the blood.

Scientists at the Fraunhofer Institute for Biomedical Engineering (IBMT, Sulzbach, Germany) recently completed a collaborative project concerning the identification of circulating tumor cells; a two-step cell analysis method was applied. In the first step, suspicious-looking cells were selected using a microscope. In the second step, the selected cells underwent detailed analysis using the more time-intensive method of Raman spectroscopy. This involves exposing the cells to light in a defined frequency range. Tumor cells scatter light in a specific way that allows them to be clearly identified. Raman spectroscopy cannot be used on conventional arrays with a glass or polymer substrate, because these materials interfere with the measurement, but this is no problem for the new IBMT chip and its silicon-nitride substrate.

Another advantage of the new microhole chip is that it can be populated with 200,000 cells, each one in a separate hole, in a matter of minutes. A micropipette is used to remove individual tumor cells from the chip for further analysis. The level of underpressure chosen to hold them in place is too low to cause any damage. Molecular-biology analysis is a useful means of identifying the factors that determine why a specific drug is able to kill tumor cells or has no effect. The new microhole chip has many other possible applications: as a selection system for protein-producing cells, for instance, such as those required to make insulin and other biopharmaceuticals.

Thomas Velten, PhD, whose team developed the microhole chip, said, “Our new microhole chip allows single cells to be picked out of the blood sample, placed on separate holes in the substrate for analysis, and removed individually afterwards. It's easy to select cells because each one has its own specific position in the array, where they are lined up like ducks in a row. Each cell is placed on a hole but cannot slip through it. A slight underpressure is applied to the cells that hold each one in its allotted place by suction.”

Related Links:
Fraunhofer Institute for Biomedical Engineering


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Laboratory Software
ArtelWare
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.