Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Optical Device Rapidly Detects Biomarkers in Urine

By LabMedica International staff writers
Posted on 22 Mar 2016
A compact optical device has been developed that can rapidly and sensitively detect biomarkers in urine and has promise for developing simple point-of-care diagnostics of cancer and other diseases. More...


Micro ribonucleic acids (miRNAs) are a newly discovered class of short, about 19 to 24 nucleotides in length, fragments of noncoding RNAs that are useful biomarkers for diagnosing various diseases, including cardiac disease and some cancers. Since they are surprisingly well preserved in fluids such as urine and blood, their detection is well suited to a rapid, point-of-care method.

Bioengineers at the Agency for Science, Technology and Research (Singapore) have devised a silicon photonic biosensor that can detect tiny changes in the phase of a light beam caused by hybridization between an immobilized DNA probe and target miRNAs in a sample. A laser beam travels through a waveguide, which splits into two arms: a sensing arm in which the light interacts with the sample and a reference arm. The two light beams then rejoin each other. Binding between the DNA probe and the target miRNA alters the phase of the light traveling in the sensing arm, whereas the phase in the reference arm remains unchanged. The amount of target miRNA in the sample can be determined by monitoring the variation in the intensity of the output beam.

To demonstrate the system, the team used it to detect two types of miRNAs in urine samples from three patients with late-stage bladder cancer; the tests involved a single reaction and took 15 minutes. The microRNA levels of the patients differed markedly from those of two healthy subjects. Mach–Zehnder interferometer (MZI) biosensor was fabricated using standard complementary metal-oxide-semiconductor (CMOS) processes. For the optical characterization of the MZI sensor, the light coming from a TSL-510 tunable laser (Santec; Komaki, Japan) at a wavelength 1,562 nm passes through a polarization controller and a fiber pigtailed collimator.

Mi Kyoung Park, PhD, the principal investigator, said, “Existing methods to detect microRNAs are time consuming and require cumbersome machines, which limit their usefulness in clinical settings. This inspired us to develop a simple and efficient point-of-care device for detecting microRNAs. The device is also highly sensitive and thus does not require labeling or amplification; it can deliver results within 15 minutes, eliminating the need for patients to return for their results; and it can potentially detect up to 16 targets in a single test.” The study was originally published in the September 2015 issue of the journal Biosensors and Bioelectronics.

Related Links:

Agency for Science, Technology and Research
Santec



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Hemodynamic System Monitor
OptoMonitor
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.