We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Prostate Cancer Detected in Blood Using Flow Cytometry

By LabMedica International staff writers
Posted on 22 Feb 2016
Current methods of detecting prostate cancer, such as the prostate-specific antigen (PSA) test and biopsies, have limitations. More...
PSA tests are based on measuring a specific protein released by the prostate gland, but do not provide a definitive diagnosis.

A physical exam and biopsy are needed if PSA levels are elevated; however, even the painful biopsy procedure has a 15% error rate. During biopsies, a painful and invasive procedure, 12 needles are inserted into the rectum, with the hope of extracting material from an area with a tumor.

A team of scientists at the Western University's Schulich School of Medicine and Dentistry (London, ON, Canada) and at Lawson Health Research Institute (London, ON, Canada) have repurposed a machine once used to detect airborne pathogens in the second Gulf War. The machine is now used for fluid biopsies, a noninvasive way to detect prostate microparticles in the blood in a matter of minutes. Microparticles are essentially refuse released by prostate cells that circulate throughout the bloodstream.

The machine was used in the Gulf War, and more commonly to test water purity and the machine uses flow cytometry (Apogee Flow Systems; Hemel Hempstead, UK) to detect microparticles. Flow cytometry measures the specific characteristics of a fluid, such as blood, as it passes through a laser. Most men, who are more than 40 years old, regardless of their health, have detectable levels of prostate microparticles in their bloodstream. The scientists have conducted the first clinical cancer project to correlate the number of microparticles in the blood to the risk of having prostate cancer in that the more microparticles, the higher the risk.

The study provides a more accurate and less invasive testing method for patients suspected of having prostate cancer, and helps to identify patients who are at a higher risk of dying from prostate cancer. Hon Leong, PhD, an assistant professor and team leader, said, “Our findings point to a new direction in how we can better identify patients who actually have prostate cancer. With this test, we can improve the clinical outcomes for patients, reducing costs for unnecessary procedures and reducing errors in diagnosis.”

Related Links:

Western University's Schulich School of Medicine and Dentistry
Lawson Health Research Institute
Apogee Flow Systems



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.