We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

High-Throughput Micro-Aperture Chip System Detects Cancer Cells

By LabMedica International staff writers
Posted on 24 Oct 2013
A system is being developed that uses tiny magnetic beads to quickly detect rare types of cancer cells circulating in a patient's blood. More...


The microchip system is based on a combination of immunomagnetic separation and microfluidics for high-throughput detection of whole cells and in this system target cells bound to magnetic beads flow parallel to a microchip.

Scientists at Purdue University (West Lafayette, IN, USA) combined the two techniques of immunomagnetic separation and microfluidics. In immunomagnetic separation, magnetic beads about a micron in diameter are "functionalized," or coated with antibodies that recognize and attach to antigens on the surface of target cells. The functionalized beads recognize breast cancer and lung cancer cells in laboratory cultures.

The updated design passes the fluid through a chamber that allows for faster flow; a standard 7.5 mL fluid sample can run through the system in a matter of minutes. The beads are directed by a magnetic field to a silicon mesh containing holes 8 µm in diameter. Because the target cells are so sparse, many of the beads fail to attract any and pass through the silicon mesh. The beads that have attached to cells are too large to pass through the holes in the mesh.

The cells can be analyzed clearly under a microscope and released from the chip for further analysis by removing the magnetic field. The system was characterized by detecting human breast adenocarcinoma cell line (MCF-7) and adenocarcinomic human alveolar basal epithelial cells (A549) in culture media using anti- epithelial cell adhesion molecule (EpCAM) conjugated magnetic beads.

Cagri A. Savran, PhD, an associate professor of Biomedical Engineering at Purdue, said, “We were able to detect cancer cells with up to a 90% yield. We expect this system to be useful in a wide variety of settings, including detection of rare cells for clinical applications. What's new here is that we've built a system that can perform all of these steps on one chip. It both separates cells and also places them on a chip surface so you can count them and study them with a microscope.” The study was highlighted on September 18, 2013, in the journal Lab on a Chip.

Related Links:

Purdue University



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Plasmodium Test
Plasmodium DNA Real Time PCR Kit
New
Varicella Zoster Virus Assay
LIAISON VZV Assay Panel (IgG HT, IgM)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.