Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Blood Collection Device Minimizes Cellular DNA Release

By LabMedica International staff writers
Posted on 27 Aug 2013
Cell-free DNA (cfDNA) circulating in blood is currently used for noninvasive diagnostic and prognostic tests and minimizing background DNA is vital for detection of low abundance cfDNA.

A newly introduced blood collection device could reduce background levels of genomic DNA (gDNA) in plasma compared to standard tubes, when subjected to conditions that may occur during sample storage and shipping.

Scientists working for a commercial manufacturer took blood samples from healthy donors into tri-potassium ethylenediaminetetraacetic acid (K3EDTA) tubes and Cell-Free DNA BCT (BCT), which is a new collection device that contains a novel chemical cocktail. More...
Samples were shaken or left unshaken to simulate shipping. In a shipping study, samples were shipped or not shipped. To assess temperature variations, samples were incubated at 6 °C, 22 °C, and 37 °C. In all cases, plasma was harvested by centrifugation and total plasma DNA (pDNA) assayed by quantitative real-time polymerase chain reaction (qPCR). The QIAamp Circulating Nucleic Acid Kit (Qiagen; Santa Clarita, CA, USA) was used for the extraction of pDNA.

The BCT tubes are manufactured by Streck, Inc., (Omaha, NE, USA) while the K3EDTA tubes were the BD Vacutainer, (Becton Dickinson; Franklin Lakes, NJ, USA). Shaking of blood drawn into K3EDTA tubes showed a significant increase in pDNA over 24 hours whereas no change was seen in Cell-Free DNA BCT tubes. Blood incubated at 6 °C, 22 °C, and 37 °C showed significant increases in pDNA isolated from K3EDTA tubes, while pDNA levels from Cell-Free DNA BCT remained stable over 14 days.

The novel stabilizing chemical cocktail prevents the release of gDNA into plasma post phlebotomy up to 14 days, avoiding labor-intensive requirements. Using this blood collection device, ex vivo storage at room temperature becomes possible, allowing flexibility for offsite blood drawn to be sent to centralized laboratories for downstream analysis of the cfDNA without preliminary centrifugations or cryopreservation.

The authors concluded that Cell-Free DNA BCT tubes prevent increases in background gDNA levels caused by temperature fluctuations or agitation that can occur during blood sample storage, shipping and processing. This novel blood-collection tube provides a method for obtaining high quality stabilized samples for rare DNA target detection and determining accurate cfDNA concentrations. The study was published on July 12, 2013, in the Journal of Clinical Laboratory Analysis.

Related Links:

Qiagen
Streck, Inc.
Becton Dickinson



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.