We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App

Novel Synergistic Platform Accurately Detects Viruses at Lowest of Concentrations

By LabMedica International staff writers
Posted on 23 Oct 2023
Print article
Image: The deep learning-based biosensing platform can count viral particles better (Photo courtesy of GIST)
Image: The deep learning-based biosensing platform can count viral particles better (Photo courtesy of GIST)

Rapid and on-site methods for detecting and quantifying viruses are crucial for both treating infected individuals and controlling the spread of the disease. The COVID-19 crisis has underscored the need for dependable, yet easily accessible tests that eliminate the complicated and lengthy procedures associated with traditional lab-based diagnostics. Bright-field microscopic imaging is a commonly used point-of-care technology for quantifying viral loads. However, the tiny size and low refractive index of viruses and similar bioparticles can make accurate detection challenging, and increase the lowest detectable concentration of viral load. While Gires-Tournois (GT) biosensors—nanophotonic resonators—have shown promise in detecting small virus particles, their utilization has been limited by issues like visual artifacts and non-reproducibility.

In a recent breakthrough, an international team of researchers, led by the Gwangju Institute of Science and Technology (GIST, Gwangju, Korea) turned to artificial intelligence (AI) to resolve this issue. They introduced a combined biosensing technology named "DeepGT." This technology combines the strengths of GT biosensors with deep learning algorithms to accurately quantify nanoscale bioparticles, such as viruses, without the need for complex sample preparation. Specifically, the team engineered a GT biosensor with a three-layer thin film design and treated it so it could detect color changes when interacting with targeted materials. To confirm its capabilities, they simulated the interaction between host cells and a virus using particles designed to resemble the SARS-CoV-2 virus.

Further, the team trained a convolutional neural network (CNN) using more than a thousand optical and scanning electron micrographs of the GT biosensor surface with different types of nanoparticles. Their findings revealed that DeepGT was not only able to refine visual artifacts common to bright-field microscopy but also could glean essential details even when the viral concentration was as low as 138 pg ml–1. Additionally, the system calculated the number of bioparticles with significant accuracy, noted by a mean absolute error of just 2.37 across nearly 1,600 images, compared to a 13.47 error rate for traditional rule-based approaches—all within a second's time. The CNN-enhanced biosensing system could also gauge the seriousness of the infection, from asymptomatic cases to severe ones, based on the viral load. Thus, DeepGT offers a speedy and exact method for virus detection across a wide range of sizes without being restricted by the inherent limitations of visible light diffraction.

"We designed DeepGT to objectively assess the severity of an infection or disease. This means that we will no longer have to rely solely on subjective assessments for diagnosis and healthcare but will instead have a more accurate and data-driven approach to guide therapeutic strategies," said Professor Young Min Song from GIST. "Our approach provides a practical solution for the swift detection and management of emerging viral threats as well as the improvement of public health preparedness by potentially reducing the overall burden of costs associated with diagnostics."

Related Links:

Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article


Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The new tests seek to detect mutant DNA in blood samples, indicating the presence of cancer cells (Photo courtesy of Christian Stolte/Weill Cornell)

Advanced Liquid Biopsy Technology Detects Cancer Earlier Than Conventional Methods

Liquid biopsy technology has yet to fully deliver on its significant potential. Traditional methods have focused on a narrow range of cancer-associated mutations that are often present in such low quantities... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.