We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Roche Diagnostics

Develops, manufactures, and markets a wide range of in vitro diagnostic systems, instruments, reagents, and tests read more Featured Products: More products

Download Mobile App




Roche Introduces AI-Based Digital Pathology RUO Algorithms for Evaluation of Breast Cancer Markers

By LabMedica International staff writers
Posted on 08 Dec 2021
Print article
Illustration
Illustration

Roche (Basel, Switzerland) has announced the research use only (RUO) launch of three new automated digital pathology algorithms, uPath Ki-67 (30-9), uPath ER (SP1) and uPath PR (1E2) image analysis for breast cancer, which are important biomarkers for breast cancer patients.

Breast cancer is the second most common cancer in the world with an estimated 2.3 million new cases in 2020 and is the most common cancer in women globally. These new algorithms complete the Roche digital pathology breast panel of image analysis algorithms. uPath Ki-67 (30-9) image analysis, uPath ER (SP1) image analysis and uPath PR (1E2) image analysis for breast cancer use pathologist-trained deep learning algorithms to enable quick calculation of Ki-67, ER and PR tumor cell nuclei positivity. This includes a whole slide analysis workflow with automated pre-computing of the slide image prior to pathologist assessment, and a clear visual overlay highlighting tumor cells with and without nuclear staining. uPath Ki-67 (30-9) image analysis, uPath ER (SP1) image analysis and uPath PR (1E2) image analysis for breast cancer produce actionable assessments of scanned slide images that are objective and reproducible, aiding pathologists in quantification of these breast cancer markers.

Intended for use with Roche’s high medical value assays and slides stained on a BenchMark ULTRA instrument using ultraView DAB detection kit, the uPath Ki-67 (30-9) image analysis, uPath ER (SP1) image analysis and uPath PR (1E2) image analysis algorithms are ready-to-use and integrated within Roche's uPath enterprise software and NAVIFY Digital Pathology, the cloud version of uPath.

“Roche is committed to the expansion of digital pathology solutions to address unmet medical needs and breast cancer diagnostics is a key opportunity area. Innovations like image analysis algorithms have the potential to impact patient care by increasing the information available to pathologists and enhancing diagnostic confidence,” said Jill German, Head of Roche Diagnostics Pathology Customer Area.

Related Links:
Roche 

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit
New
Fixed Speed Tube Rocker
GTR-FS

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.