Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




“Virtual Slides” Reveal Disease Tissue in 3D

By LabMedica International staff writers
Posted on 07 May 2012
A fast, user-friendly system has been developed for examining tissue samples in “virtual” 3D images. More...
The novel digital scanning 3D reconstruction system produces high-resolution, multicolored images that can be rotated and examined from any angle.

Computing experts and medical researchers at the University of Leeds (Leeds, UK) have combined efforts to developed this technology as a particularly useful tool for histopathology researchers and potentially also for clinical practice, as medical imaging technology provides even higher resolution images of tissue.

Viewing tissue in 3D enables more in-depth understanding of tissue shape characteristics in ways not possible with conventional methods. Currently, hospital pathologists and medical researchers cut tissue samples into ultra-thin slices and routinely examine these by hand, one-by-one, on a microscope. This is a labor-intensive process - a single slide can contain several hundred thousand cells. To perform a 3D-like analysis, users would need to look at hundreds of different 2D sections - something that would be prohibitively expensive and time-consuming.

In contrast, the system developed at the University of Leeds requires almost no extra manual input once the tissue has been cut and mounted onto glass slides. An automated system turns batches of the slides into high-resolution digital images, which are then aligned using image registration software. Users, without input from computing specialists, can then study these virtual blocks of tissue in 3D and zoom in on particular areas of interest.

The researchers have now tested the system on eight different types of tissue, using more than 13,000 virtual slides to create around 400 separate 3D volumes. The system and selected case studies, including examples of liver disease, cancer, and embryology, are described in the May 2012 issue of the American Journal of Pathology.

This new approach to digital 3D reconstruction reveals more detailed information about disease processes - information that could be used to develop new therapies or explain why conventional treatments are not working. "Having a 3D view can often make a real difference," said Dr. Derek Magee, from the University of Leeds School of Computing, where the system’s software was developed. "For instance, if you want to understand how a system of blood vessels supplying a tumor connects up, you really need to see that in 3D, not as a series of separate 2D sections."

Related Links:

University of Leeds
Sample 3D images


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.