We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Screening Technique Identifies Genes Behind Heart Cell Damage from Chemotherapy

By LabMedica International staff writers
Posted on 03 Dec 2024

Doxorubicin is a potent chemotherapy drug that effectively targets cancer cells, but it also disrupts heart cells, causing them to beat irregularly, organize incorrectly, or even die. More...

When used in high doses or over extended periods, doxorubicin can lead to heart failure, which limits its use despite its cancer-fighting effectiveness. Now, researchers may have uncovered why doxorubicin harms heart cells and identified a drug that could keep them beating.

A team of researchers at Stanford Medicine (Stanford, CA, USA) has developed a genetic screening tool using CRISPR, a powerful gene-editing technology, to identify genes involved in doxorubicin-induced heart damage. Through this method, they identified a gene that seemed to play a key role in the drug's harmful effects on the heart. Although it was known that doxorubicin damages heart cells, the specific genes responsible for this damage were unclear. The researchers focused their search on 2,300 genes that are already targeted by existing drugs. They utilized a novel genetic screening technique to observe the effects of doxorubicin on heart cells derived from induced pluripotent stem cells, which can differentiate into any cell type. By using CRISPR to turn on or off individual genes within these heart cells, the researchers exposed the cells to doxorubicin and noted which ones survived. The next step was to understand why these cells survived. To uncover this, the researchers sequenced the DNA of each cell, searching for genetic markers associated with survival.

Their findings revealed that the heart cells that survived after doxorubicin treatment lacked a gene called CA12. This gene is responsible for catalyzing reactions involving carbon dioxide, which helps regulate essential body functions such as respiration and saliva production. Further genetic tests confirmed their hypothesis: when CA12 was deleted from heart cells, they became resistant to doxorubicin-induced damage. While the exact role of CA12 during doxorubicin treatment is still not fully understood, the researchers are working to figure out its function. Once CA12 was identified as a critical factor in doxorubicin toxicity, the team sought a way to prevent the CA12 protein from causing harm to heart cells. They selected 40 drugs known to inhibit carbonic anhydrase proteins like CA12 and tested them alongside doxorubicin on heart cells. By comparing the survival rates of these cells, they identified which drugs helped the cells survive the treatment.

Their research, published in Cell Stem, found that a drug called indisulam, currently being studied as a potential cancer treatment, helped heart cells survive doxorubicin toxicity. Indisulam protected the heart cells’ ability to contract and relax, maintaining essential cellular functions. The next phase of the research involved testing indisulam in living organisms. Mice were treated with doxorubicin and then given either indisulam or a control. The mice that received indisulam along with doxorubicin showed improved heart function, less heart atrophy, and better-maintained heart cell structure. The researchers are now focused on understanding how indisulam blocks CA12 activity and plan further testing to reduce doxorubicin’s toxicity. Additionally, they aim to explore how multiple genes work together in causing heart cell damage, rather than focusing on one gene at a time. The team has ambitious plans for their CRISPR-based screening tool and intends to apply it beyond heart cell toxicity in future studies.

“This CRISPR screen is a valid tool for drug discovery. That, to me, is the key take-home message of the study,” said Joseph Wu, MD, PhD, a professor of cardiovascular medicine and the director of the Stanford Cardiovascular Institute. “It’s a proof of principle. In the future you could use it for other types of toxicity or diseases. We think it’s a very powerful tool.”


Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Portable Electronic Pipette
Mini 96
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: Automated cell imaging discriminates CD8+ T cells according to natalizumab treatment outcome in MS patients (B Chaves et al., Nat Commun 16, 5533 (2025). DOI: 10.1038/s41467-025-60224-3)

Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients

Multiple sclerosis (MS) is a chronic autoimmune and degenerative neurological disease that affects the central nervous system, leading to motor, cognitive, and mental impairments. Symptoms can include... Read more

Technology

view channel
Image: The SWITCH hybrid pipette is designed to simplify and accelerate pipetting tasks (Photo courtesy of INTEGRA)

Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting

Manual pipettes offer the control needed for delicate tasks such as mixing or supernatant removal, but typically fall short in repetitive workflows like aliquoting. Electronic pipettes solve this problem... Read more

Industry

view channel
Image: ELITechGroup’s unique Real-Time PCR technologies include the revolutionary Minor Groove Binder (Photo courtesy of ELITechGroup)

ELITech and Hitachi High-Tech to Develop Automated PCR Testing System for Infectious Diseases

Molecular testing has become central to diagnosing and monitoring infectious diseases by analyzing genetic information. The use of PCR during the COVID-19 pandemic showed its value, but traditional systems... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.