We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

By LabMedica International staff writers
Posted on 04 Nov 2024

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve. More...

While survival is possible for children with SVHDs, their quality of life is significantly affected due to having only one functional ventricle. This serious congenital heart defect requires immediate treatment after birth. As the number of fetal therapies increases, the importance of early diagnosis becomes even more pronounced. Early detection of congenital heart diseases during pregnancy would not only provide physicians with additional time to plan treatment but also reduce the financial burden on families. It would enable them to consider earlier therapeutic options that could enhance survival rates and improve outcomes for newborns facing life-threatening heart conditions. Currently, the standard method for diagnosing congenital heart disease prenatally occurs at the five-month mark of pregnancy through ultrasound, at which point the disease is usually advanced enough to be visually identified. This method relies on imaging technology and equipment, leading to increased healthcare costs and heightened risks of healthcare inequity.

Researchers at Nationwide Children's Hospital (Columbus, OH, USA) have now discovered a potential biomarker that could detect the presence of SVHDs in a fetus through a maternal blood test. This test analyzes elevated levels of cell-free microRNAs (miRNAs) in the blood of mothers carrying a fetus with single ventricle heart disease. According to a research letter published in Circulation Research, these cell-free miRNAs could eventually serve as noninvasive biomarkers for earlier prenatal detection of single ventricle heart diseases.

In their study, the researchers utilized deep sequencing to identify elevated cell-free miRNAs in the maternal blood of pregnant participants carrying a fetus diagnosed with SVHD. They also employed induced pluripotent stem cells (iPSCs) to examine the functions of these miRNAs in the proliferation of human cardiomyocytes. The findings suggest that these cell-free miRNAs in maternal blood hold promise as noninvasive biomarkers for the prenatal detection of fetal SVHDs, pending additional animal studies and clinical validation.

“This technology is in an early phase; preclinical studies and additional clinical validation is needed, but we are encouraged by what this could mean for the evolution of detecting and managing single ventricle heart diseases in children,” said Mingtao Zhao, DVM, PhD, senior author of the study and associate professor in the Center for Cardiovascular Research at Nationwide Children’s. “This is a step toward further improved outcomes for newborns with congenital heart diseases.
 


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.