We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood-Based Test Allows for Minimally Invasive Detection of IDH1.R132H-Mutant Gliomas

By LabMedica International staff writers
Posted on 04 Sep 2024
Print article
Image: A blood-based assay has been developed for the detection of IDH1.R132H-mutant gliomas (Photo courtesy of 123RF)
Image: A blood-based assay has been developed for the detection of IDH1.R132H-mutant gliomas (Photo courtesy of 123RF)

Glioma is the most prevalent type of central nervous system cancer in adults. It is classified based on molecular alterations, notably the IDH1.R132H mutation, which helps in grouping lesions into different prognostic categories. Traditionally, gliomas are diagnosed through neuroimaging and subsequent tissue biopsies, which include surgical biopsies or resections. These methods, while standard, carry procedural risks and may not capture the full complexity and variability of the tumor. Moreover, knowing the IDH mutation status before surgery can guide the surgical approach. Researchers have now developed a blood test that detects tumor-derived extracellular RNA from just 2ml of blood, providing a minimally invasive diagnostic option.

The blood-based test, mt-IDHIdx, was developed by researchers at Massachusetts General Hospital (Boston, MA, USA) and validated across the study population (n=133) involving 133 individuals—80 with IDH1.R132H mutant gliomas, 44 with IDH1 wild-type gliomas, and nine healthy controls. The results from plasma testing published in Nature Communications show an overall sensitivity of 75.0% (95% CI: 64.1%–84.0%) and a specificity of 88.7% (95% CI: 77.0%–95.7%), with a positive predictive value of 90.9% and a negative predictive value of 70.1%, when compared to the traditional tissue-based methods. This blood-based testing not only serves diagnostic purposes but is also useful for ongoing monitoring and surveillance of the disease.

The workflow of this testing method is optimized, allowing for the analysis of tumor tissue and plasma samples to be completed in less than four hours from collection. With the ability to detect the IDH1 mutation from a blood sample, this approach enables non-invasive diagnosis and the monitoring of disease progression, treatment response, or recurrence. This breakthrough comes at a pivotal time as the FDA recently approved a new therapy, vorasidenib, targeting this mutation. Once the blood test is approved, it could significantly aid in selecting appropriate treatments and in managing patient care over time.

Related Links:
Massachusetts General Hospital

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultrasonic Cleaner
UC 300 Series
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.