Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Microfluidic Platform for Rapid Malaria Infection Screening and Genotyping Delivers 98% Accuracy

By LabMedica International staff writers
Posted on 04 Dec 2023

Malaria, caused by various Plasmodium species, is a global health challenge that requires accurate detection and genotyping for effective management. More...

The main method for diagnosing malaria is nucleic acid amplification testing, which can be difficult to implement widely, especially in areas with limited resources. CRISPR/Cas systems have brought significant advancements in molecular diagnostics; however, they often require dual stages, adding complexity and hindering broad application. Moreover, using limited systems could lead to biocompatibility issues and potentially reduce the efficiency of detection. Precise genetic typing is crucial in the treatment and control of malaria. Now, a microfluidic platform combines recombinase polymerase amplification (RPA) and CRISPR-based detection to enable the simultaneous screening of malaria infections and genotyping of Plasmodium species.

This innovative Flexible, Robust, Equipment-free Microfluidic (FREM) platform, developed by researchers at the School of Global Health at the Shanghai Jiao Tong University School of Medicine (Shanghai, China), includes a sucrose solution to effectively address compatibility issues when merging RPA and CRISPR assays in a single-pot system. This innovation simplifies the diagnostic process while maintaining high efficiency. The integration of RPA and CRISPR-based detection within a microfluidic chip provides a reliable solution for identifying five different Plasmodium species, marking a significant leap in point-of-care diagnostics for malaria, particularly in areas with limited resources.

In their research, the team assessed the platform's ability to screen for malaria and genotype Plasmodium species simultaneously. Testing DNA extracts from patients suspected of having malaria, they found the FREM platform's sensitivity to be 98.41% and specificity 92.86%, aligning closely with PCR-sequencing results for malaria detection. The positive predictive agreement was 98.41% and the negative predictive agreement was 92.86%. Moreover, the accuracy of species genotyping was confirmed, showing a 90.91% concordance rate between the FREM platform and PCR sequencing.

The study highlights the FREM platform's capability in not only screening for malaria infection but also in accurately genotyping Plasmodium species. This development could significantly improve epidemiological surveillance and aid in making informed treatment decisions, especially in regions lacking advanced laboratory resources. By enabling the specific identification of Plasmodium parasites, the FREM platform aids in monitoring different species, contributing to more focused interventions and better resource allocation. Beyond its immediate application in malaria diagnostics, this innovation has implications for tackling other infectious diseases, underscoring its potential to impact global health beyond malaria.

Related Links:
Shanghai Jiao Tong University School of Medicine


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
New
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.