We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Fluorescent Carbon Nanotubes Accurately Detect Bacteria and Viruses

By LabMedica International staff writers
Posted on 31 Jul 2023

An interdisciplinary research team that comprised scientists from Ruhr University Bochum (RUB, Bochum, Germany) has developed an innovative method to construct modular optical sensors capable of identifying viruses and bacteria. More...

The team utilized fluorescent carbon nanotubes attached to a novel type of DNA anchors which serve as molecular handles. These anchor structures can be utilized to conjugate biological recognition units such as antibodies aptamers to the nanotubes, enabling interaction with bacterial or viral molecules. This interaction impacts the fluorescence of the nanotubes, causing their brightness levels to increase or decrease.

The research team utilized tubular nanosensors composed of carbon, each with a diameter of less than one nanometer. When irradiated with visible light, these nanotubes emit near-infrared light, a spectrum invisible to the human eye but ideal for optical applications due to the significant reduction of other signals within this range. Previously, the team had successfully manipulated the nanotubes' fluorescence to detect vital biomolecules. Their latest effort involved customizing carbon sensors for easy detection of various target molecules.

This breakthrough was achieved with the help of DNA structures with guanine quantum defects. This process involved linking DNA bases to the nanotube in order to introduce a defect into the nanotube's crystal structure. Consequently, the nanotubes' fluorescence underwent a quantum-level change. In addition, the defect functioned as a molecular handle, enabling the addition of a detection unit that could be adjusted to the respective target molecule to identify a specific viral or bacterial protein.

The team demonstrated the new sensor concept by targeting the SARS-CoV-2 spike protein. Researchers used aptamers that bind to the SARS-CoV-2 spike protein, following which the fluorescent sensors reliably indicated the protein's presence. Notably, the selectivity and stability of sensors featuring guanine quantum defects surpassed those of sensors without such defects, especially when in solution.

Related Links:
Ruhr University Bochum


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
Rapid Molecular Testing Device
FlashDetect Flash10
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.