We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Phage- and CRISPR-Based Approaches to Enable Diagnosis of Sepsis in Blood Samples

By LabMedica International staff writers
Posted on 03 Nov 2022

Sepsis is a severe and life-threatening condition caused by bacterial infection and is one of the most common causes of death in hospitalized patients. More...

Nearly 1.7 million adults in the U.S. develop sepsis, and a quarter of that number die from the infection. Some infections cannot be resolved by general antibiotics because of strains of bacteria mutating, making it a challenge to provide adequate treatment. Due to the dynamic and acute nature of sepsis, it requires immediate medical treatment. If sepsis is not diagnosed and treated quickly, septic shock will occur, thus resulting in failing blood pressure and loss of sufficient oxygen to organs of the body. Current diagnosing methods either are rapid but fail to offer the necessary sensitivity and accuracy or they rely on culture-based colony counting which does not meet the speed required. A team of researchers is now working to develop novel phage- and CRISPR-based approaches to detect and treat sepsis, including hybrid bio-inorganic nanobots, CRISPR-based devices, and CRISPR-quipped engineered phages.

Juhong Chen, assistant professor of biological systems engineering in the College of Agriculture and Life Sciences and College of Engineering at Virginia Tech (Blacksburg, VA, USA), has received a five-year, USD 1.9 million grant as part of the NIH’s Maximizing Investigators’ Research Award for Early State Investigators program. This is given to faculty researchers who have demonstrated foundational biomedical technologies, such as prototype devices and applications that could advance important medical breakthroughs. One of the many areas under review by the NIH is sepsis - specifically toward effective treatment options, better diagnosis technologies, and to further clarify key risk factors. Chen and his research group also aim to address challenges for the detection of sepsis-related pathogens in blood samples. Chen’s research could lead to formulating a revolutionary strategy to diagnose sepsis in blood samples in the future.

“Our study will lay down the foundation for better understanding, diagnosing, and treating sepsis in hospitalized patients,” Chen said. “Providing reliable, sensitive, and timely detection of sepsis-related bacteria is crucial for improving patient survival rate.”

Related Links:
Virginia Tech 


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.