We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Phage- and CRISPR-Based Approaches to Enable Diagnosis of Sepsis in Blood Samples

By LabMedica International staff writers
Posted on 03 Nov 2022

Sepsis is a severe and life-threatening condition caused by bacterial infection and is one of the most common causes of death in hospitalized patients. More...

Nearly 1.7 million adults in the U.S. develop sepsis, and a quarter of that number die from the infection. Some infections cannot be resolved by general antibiotics because of strains of bacteria mutating, making it a challenge to provide adequate treatment. Due to the dynamic and acute nature of sepsis, it requires immediate medical treatment. If sepsis is not diagnosed and treated quickly, septic shock will occur, thus resulting in failing blood pressure and loss of sufficient oxygen to organs of the body. Current diagnosing methods either are rapid but fail to offer the necessary sensitivity and accuracy or they rely on culture-based colony counting which does not meet the speed required. A team of researchers is now working to develop novel phage- and CRISPR-based approaches to detect and treat sepsis, including hybrid bio-inorganic nanobots, CRISPR-based devices, and CRISPR-quipped engineered phages.

Juhong Chen, assistant professor of biological systems engineering in the College of Agriculture and Life Sciences and College of Engineering at Virginia Tech (Blacksburg, VA, USA), has received a five-year, USD 1.9 million grant as part of the NIH’s Maximizing Investigators’ Research Award for Early State Investigators program. This is given to faculty researchers who have demonstrated foundational biomedical technologies, such as prototype devices and applications that could advance important medical breakthroughs. One of the many areas under review by the NIH is sepsis - specifically toward effective treatment options, better diagnosis technologies, and to further clarify key risk factors. Chen and his research group also aim to address challenges for the detection of sepsis-related pathogens in blood samples. Chen’s research could lead to formulating a revolutionary strategy to diagnose sepsis in blood samples in the future.

“Our study will lay down the foundation for better understanding, diagnosing, and treating sepsis in hospitalized patients,” Chen said. “Providing reliable, sensitive, and timely detection of sepsis-related bacteria is crucial for improving patient survival rate.”

Related Links:
Virginia Tech 


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.