We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

BRUKER

BRUKER offers high-performance scientific instruments and high-value analytical and diagnostic solutions that enable ... read more Featured Products: More products

Download Mobile App




Same Day Test Identifies Secondary Infections in COVID-19 Patients

By LabMedica International staff writers
Posted on 02 Dec 2021
The intensive care unit (ICU) is a dynamic environment with frequent staff-patient contact for invasive monitoring, interventions and personal care that together introduce the risk of secondary or nosocomial infection. More...
When critically ill patients are cared for in the ICU, doctors may take deep samples from their lungs.

Currently samples are often sent to multiple laboratories where different bacterial and fungal cultures are set up alongside other complex molecular tests. Initial results take two to four days to return. SARS-CoV-2 has put considerable strain on ICUs, which has the potential to increase nosocomial infection, antimicrobial treatment and antimicrobial resistance (AMR).

A team of Infectious Diseases specialists led by those at Guy’s and St Thomas’ Hospital (London, UK) processed surplus clinical respiratory samples from 34 ICU COVID-19 patients with suspected secondary infections. Samples processed by the clinical laboratory included respiratory clinical samples (tracheal aspirates, bronchoalveolar lavages (BALs) and non-direct bronchoalveolar lavages (NDLs, a BAL collected without the use of a bronchoscope) for (i) routine microbiological culture for bacterial and fungal pathogens or detection of SARS-CoV-2 by PCR and (ii) sera and BALs for galactomannan (GM) antigen detection when Aspergillus infection was suspected.

Sabouraud agar plates were set up for the detection of Candida spp. and Aspergillus spp. and incubated for five days at 37 °C in aerobic conditions. Bacterial colonies were identified using MALDI-TOF (Bruker, Billerica, MA, USA) except the Aspergillus spp. where microscopy was performed. Clinical metagenomics (CMg) using nanopore sequencing (Oxford Nanopore Technologies, Oxford Science Park, UK) was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. Fragment size and quality of metagenomic libraries were analyzed using the TapeStation 4200 automated electrophoresis platform (Agilent Technologies, Santa Clara, CA, USA).

The investigators reported that an 8-hour CMg workflow was 92% sensitive and 82% specific for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of β-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from four positive and 39 negative samples. Molecular typing using 24-h sequencing data identified multi-drug resistant (MDR)- Klebsiella pneumoniae ST307 outbreak involving four patients and an MDR- Corynebacterium striatum outbreak involving 14 patients across three ICUs.

Jonathan D. Edgeworth, PhD, a Consultant Microbiologist and senior author of the study, said, “As soon as the pandemic started, our scientists realized there would be a benefit to sequencing genomes of all bacteria and fungi causing infection in COVID-19 patients while in the ICU. Within a few weeks we showed it can diagnose secondary infection, target antibiotic treatment and detect outbreaks much earlier than current technologies – all from a single sample.”

The authors concluded that CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg. The study was published on November 17, 2021 in the journal Genome Medicine.

Related Links:
Guys and St Thomas’ Hospital
Bruker
Oxford Nanopore Technologies
Agilent Technologies



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Scout\'s patented molecular technology delivers results matching high-complexity PCR 99% of the time (Photo courtesy of Scout Health)

STI Molecular Test Delivers Rapid POC Results for Treatment Guidance

An affordable, rapid molecular diagnostic for sexually transmitted infections (STIs) has the potential to be globally relevant, particularly in resource-limited settings where rapid, point-of-care results... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.