We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

CEPHEID

Develops, manufactures, and markets molecular systems and tests for institutions to perform sophisticated genetic tes... read more Featured Products: More products

Download Mobile App




Unique Gene Detects Mycobacterium Tuberculosis in Clinical Sputum

By LabMedica International staff writers
Posted on 13 Oct 2021
Print article
Image: The GeneXpert MTB/RIF assay for tuberculosis and rifampicin resistance was compared with unique gene to detect Mycobacterium tuberculosis (Photo courtesy of Cepheid)
Image: The GeneXpert MTB/RIF assay for tuberculosis and rifampicin resistance was compared with unique gene to detect Mycobacterium tuberculosis (Photo courtesy of Cepheid)
Tuberculosis (TB) is a common infectious disease caused by Mycobacterium tuberculosis (MTB). The main organ infected by MTB is the lung, but many other tissues or organs can be affected, such as the bone and pleura. Two million people die of MTB infection each year due to poor quality of life and lack of awareness.

An early and accurate diagnosis of TB is the critical factor for controlling and effectively treating the epidemic. Molecular detection, sputum-smear microscopy, and culture-based methods are widely used to diagnose TB in the clinic. The benefits of molecular diagnosis are rapidity, specificity, and high sensitivity.

Health Scientists at the Kunming University of Science and Technology (Kunming, China) collected a total of 232 clinical sputum samples from TB patients by physicians from January 2019 to December 2020. Sputum from all patients was subjected to the BACT MGIT-960 test (Becton-Dickinson, Brea, CA, USA) and Gene Xpert MTB/RIF assay (Cepheid, Sunnyvale, CA, USA).

A total of 173 genome sequences of Mycobacterium were downloaded and analyzed and a specific MTB gene was selected. The TB18.5 gene was considered a specific gene of the MTB strains and TB18.5 primers were designed. One-step PCR was performed in a 20 µL reaction volume, including 3 µL of DNA extracted from sputum, 10 µl of 2× TSINGKE Master Mix, and 0.3 µM each of the myco-F1 and myco-R1 primers and nested PCR was also performed. Six common clinical pathogens were used as negative controls to investigate the specificity of the TB18.5 gene and the primers.

The investigators reported that the results showed that 195 (84.05%), 182 (78.45%), and 162 (69.83%) samples were identified as MTB using nested PCR, the Gene Xpert MTB/RIF assay, and the BACTEC MGIT-960 CULTURE test, respectively. Although the nested PCR-positive ratio was the highest among the three methods, no statistical difference was identified between results of nested PCR and Gene Xpert MTB/RIF assay. However, there were significant difference between results of BACTEC MGIT-960 CULTURE test and nested PCR or Gene Xpert MTB/RIF assay.

The authors concluded that the TB18.5 gene, which was identified as a unique gene in MTB strains, was used to evaluate MTB infections. The optimized nested PCR/nested qRT-PCR method was established to detect MTB in clinical sputum samples, which showed higher positive ratio than Xpert MTB/RIF assay and the BACTEC MGIT-960 CULTURE test. Therefore, it is benefit for TB patients to obtain early and sensitively diagnose and treatment by using this nest-PCR method. The study was published on September 30, 2021 in the Journal of Clinical Laboratory Analysis.

Related Links:
Kunming University of Science and Technology
Becton-Dickinson
Cepheid


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.