We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biomarker in Stools Helps to Diagnose Necrotizing Enterocolitis in Premature Babies

By LabMedica International staff writers
Posted on 20 Nov 2019
Print article
Image: Cartoon representation of the molecular structure of alkaline phosphatase protein (Photo courtesy of Wikimedia Commons)
Image: Cartoon representation of the molecular structure of alkaline phosphatase protein (Photo courtesy of Wikimedia Commons)
Identification of a novel biomarker will enable clinicians to better diagnose necrotizing enterocolitis, a devastating disease that affects premature infants.

Necrotizing enterocolitis (NEC) is a medical condition where a portion of the bowel dies. It typically occurs in newborns of either sex that are either premature or otherwise unwell. Symptoms may include poor feeding, bloating, decreased activity, blood in the stool, or vomiting of bile. Inflammation of the intestine leads to bacterial invasion causing cellular damage and cell death, which causes necrosis of the colon and intestine. About 7% of those that are born premature develop NEC. Onset is typically in the first four weeks of life. Among those affected, about 25% die.

Since intestinal alkaline phosphatase (iAP) activity is known to signal the chemical process triggering inflammation, investigators at Louisiana State University Health Sciences Center (New Orleans, USA) examined the abundance and enzyme activity of iAP shed in stools by newborns to assess the correlation of two iAP biochemical measures with NEC disease severity.

Intestinal alkaline phosphatase is secreted by enterocytes, and seems to play a pivotal role in intestinal homeostasis and protection as well as in mediation of inflammation via repression of the downstream Toll-like receptor (TLR)-4-dependent and MyD88-dependent inflammatory cascade. It dephosphorylates toxic/inflammatory microbial ligands like lipopolysaccharides, unmethylated cytosine-guanine dinucleotides, flagellin, and extracellular nucleotides such as uridine diphosphate or ATP. Thus, altered IAP expression has been implicated in chronic inflammatory diseases such as inflammatory bowel disease (IBD). It also seems to regulate lipid absorption and bicarbonate secretionin the duodenal mucosa, which regulates the surface pH.

The current multi-center diagnostic study comprised 136 premature infants (gestational age, less than 37 weeks). Infant stool samples were collected between 24 and 40 or more weeks post-conceptual age. Enrolled infants underwent abdominal radiography at physician and hospital site discretion. Enzyme activity and relative abundance of iAP were measured using fluorometric detection and immunoassays, respectively.

The data showed that of the 136 infants, 68 (50.0%) were male, median birth weight was 1050 g, and median gestational age was 28.4 weeks. A total of 25 infants (18.4%) were diagnosed with severe NEC, 19 (14.0%) were suspected of having NEC, and 92 (66.9%) did not have NEC; 26 patients (19.1%) were diagnosed with late-onset sepsis, and 14 (10.3%) had other non–gastrointestinal tract infections.

Results of iAP analysis revealed that high amounts of intestinal alkaline phosphatase protein in stools combined with low intestinal alkaline phosphatase enzyme activity were associated with diagnosis of necrotizing enterocolitis. There was no association of intestinal alkaline phosphatase levels with non–gastrointestinal tract infections.

"Intestinal AP is the first candidate diagnostic biomarker, unique in its predictive value for NEC," said senior author Dr. Sunyoung Kim, professor of biochemistry and molecular biology at Louisiana State University Health Sciences Center. "It is correlated only with NEC and is not associated with sepsis or other non-GI infections. The clinical potential of this noninvasive tool lies in its use to identify infants most at risk to develop NEC, to facilitate management of feeding and antibiotic regimens, and monitor response to treatment."

The study was published in the November 8, 2019, online edition of the journal JAMA Network Open.

Related Links:
Louisiana State University Health Sciences Center

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test
New
Creatine Kinase-MB Assay
CK-MB Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.