We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Fluorescent Markers May Aid Cancer Diagnostics by Tracking Metabolites

By LabMedica International staff writers
Posted on 15 Apr 2019
Print article
Image: New imaging technology based on fluorescent chemical probes enables visualization of what cells eat, which could aid the diagnosis and treatment of diseases such as cancer (Photo courtesy of the University of Edinburgh).
Image: New imaging technology based on fluorescent chemical probes enables visualization of what cells eat, which could aid the diagnosis and treatment of diseases such as cancer (Photo courtesy of the University of Edinburgh).
A novel class of fluorescent markers allows real‐time tracking of essential metabolites in live cells in culture and in vivo in order to trace the acquisition of metabolic profiles from human cancer cells of variable origin.

The transport and trafficking of metabolites are critical for the correct functioning of live cells. However, in situ metabolic imaging studies are hampered by the lack of fluorescent chemical structures that allow direct monitoring of small metabolites under physiological conditions with high spatial and temporal resolution.

To improve this situation, investigators at the University of Edinburgh (United Kingdom) developed a novel class of small‐sized multi‐colored fluorophores for real‐time tracking of essential metabolites in live cells. These "SCOTfluors" (small, conjugatable, orthogonal, and tunable fluorophores) permitted visualization by microscope of minute changes in cells' incorporation of metabolites within the body's tissues, making it easier to identify sites of disease.

Senior author Dr. Marc Vendrell, senior lecturer in biomedical imaging at the University of Edinburgh, said, "We have very few methods to measure what cells eat to produce energy, which is what we know as cell metabolism. Our technology allows us to detect multiple metabolites simultaneously and in live cells, by simply using microscopes. This is a very important advance to understand the metabolism of diseased cells and we hope it will help develop better therapies."

The SCOTfluors paper was published in the March 28, 2019, online edition of the journal Angewandte Chemie.

Related Links:
University of Edinburgh

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.