We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




DNA Recombination in Brain Linked to Alzheimer's Disease

By LabMedica International staff writers
Posted on 05 Dec 2018
Print article
Image: Gene recombination in neurons that produces thousands of new gene variants within Alzheimer’s disease brains have been identified (Photo courtesy of Sanford Burnham Prebys Medical Discovery Institute).
Image: Gene recombination in neurons that produces thousands of new gene variants within Alzheimer’s disease brains have been identified (Photo courtesy of Sanford Burnham Prebys Medical Discovery Institute).
Alzheimer's disease is a public health crisis. The cause of the disease remains unknown and no meaningful treatment exists. Nearly six million people in the USA are living with Alzheimer's disease, a number projected to reach 14 million by 2060 as the population ages.

The amyloid hypothesis, or the theory that accumulation of a protein called beta-amyloid in the brain causes Alzheimer's disease, has driven Alzheimer's studies to date. However, treatments that target beta-amyloid have notoriously failed in clinical trials.

A team of scientists associated with the Sanford Burnham Prebys Medical Discovery Institute (La Jolla, CA, USA) have identified gene recombination in neurons that produces thousands of new gene variants within Alzheimer's disease brains. The study reveals for the first time how the Alzheimer's-linked gene, Amyloid Beta Precursor Protein (APP), is recombined by using the same type of enzyme found in human immunodeficiency virus (HIV).

The investigators used new analytical methods that focused on single and multiple-cell samples, and found that the APP gene, which produces the toxic beta amyloid proteins defining Alzheimer's disease, gives rise to novel gene variants in neurons, creating a genomic mosaic. The process required reverse transcription and reinsertion of the variants back into the original genome, producing permanent DNA sequence changes within the cell's DNA blueprint.

All of the Alzheimer's disease brain samples contained an over-abundance of distinct APP gene variants, compared to samples from normal brains. The team discovered that neurons from the patients with Alzheimer’s disease contained about six times as many varieties of the APP gene as did the cells from the healthy people. Among these Alzheimer's-enriched variations, the scientists identified 11 single-nucleotide changes identical to known mutations in familial Alzheimer's disease, a very rare inherited form of the disorder. Although found in a mosaic pattern, the identical APP variants were observed in the most common form of Alzheimer's disease, further linking gene recombination in neurons to disease.

Jerold Chun, MD, PhD, a professor and senior author of the study said, “These findings may fundamentally change how we understand the brain and Alzheimer's disease. If we imagine DNA as a language that each cell uses to 'speak,' we found that in neurons, just a single word may produce many thousands of new, previously unrecognized words. This is a bit like a secret code embedded within our normal language that is decoded by gene recombination. The secret code is being used in healthy brains but also appears to be disrupted in Alzheimer's disease.” The study was published on November 21, 2018, in the journal Nature.

Related Links:
Sanford Burnham Prebys Medical Discovery Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.