We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Genes Should Be Screened for Stem Cell Transplants

By LabMedica International staff writers
Posted on 10 May 2017
Print article
Image: A new study suggests genes should be screened for stem cell transplants (Photo courtesy of Medical Xpress).
Image: A new study suggests genes should be screened for stem cell transplants (Photo courtesy of Medical Xpress).
Regenerative medicine using human pluripotent stem cells (hPS cells) to grow transplantable tissue outside the body carries the promise to treat a range of intractable disorders, such as diabetes and Parkinson's disease. These hPS cells can self-renew indefinitely, making them an attractive source for regenerative therapies.

As stem cell lines grow in a laboratory dish, they often acquire mutations in the Tumor Protein P53 (p53) gene, an important tumor suppressor responsible for controlling cell growth. It is suggested that genetic sequencing technologies should be used to screen for mutated cells in stem cell cultures, so that cultures with mutated cells can be excluded from therapeutic use.

An international team of scientists working with a group at Harvard University sequenced the protein-coding genes (exomes) of 140 independent human embryonic stem cell (hES cell) lines, including 26 lines prepared for potential clinical use. They then apply computational strategies for identifying mutations present in a subset of cells in each hES cell line.

They identified five unrelated hES cell lines that carried six mutations in the TP53 gene that encodes the tumor suppressor P53. The TP53 mutations we observed are dominant negative and are the mutations most commonly seen in human cancers. They found that the TP53 mutant allelic fraction increased with passage number under standard culture conditions, suggesting that the P53 mutations confer selective advantage. They performed a sophisticated set of DNA analyses to rule out the possibility that these mutations had been inherited rather than acquired as the cells grew in the lab. The scientists found that P53 mutant cells outperformed and surpassed non-mutant cells in the laboratory. In other words, a culture with a million healthy cells and one p53 mutant cell could quickly become a culture of only mutant cells.

The authors concluded that as the acquisition and expansion of cancer-associated mutations in hPS cells may go unnoticed during most applications, they suggest that careful genetic characterization of hPS cells and their differentiated derivatives be carried out before clinical use. Kevin C. Eggan, PhD, the principal investigator said, “Our findings indicate that an additional series of quality control checks should be implemented during the production of stem cells and their downstream use in developing therapies. Fortunately, these genetic checks can be readily performed with precise, sensitive, and increasingly inexpensive sequencing methods.” The study was published on April 26, 2017, in the journal Nature.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.