We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Bioinformatics Tool for Evaluating the Evaluation of Cancer Genes

By LabMedica International staff writers
Posted on 28 Dec 2016
Researchers offer a new software tool being developed to help assess computational algorithms used in methods to identify mutant genes that drive cancer. More...
The tool could thereby lead to more precise diagnostics and targeted treatments for patients.

In the search for new ways to tackle cancer, many scientists use genome sequencing to hunt for mutations that facilitate tumor cell growth. To aid in this search, some researchers have developed new bioinformatics methods that each claim to help pinpoint the cancer driver mutants. But a question remains: Among the numerous new tactics, which produce more accurate results?

To help solve this puzzle, a team of Johns Hopkins University (Baltimore, MD, USA) computational scientists and cancer experts devised the new tool to help assess how well current strategies work in identifying cancer-promoting mutations and distinguishing them from benign mutations in cancer cells.

"Identifying the genes that cause cancer when altered is often challenging, but is critical for directing research along the most fruitful course," said co-author Bert Vogelstein, Johns Hopkins Kimmel Cancer Center, "This paper establishes novel ways to judge the techniques used to identify true cancer-causing genes and should considerably facilitate advances in this field in the future."

Lead author Collin J. Tokheim, doctoral student in the laboratory of senior author Rachel Karchin, associate professor at Johns Hopkins, said one of the challenges the team faced was the lack of a widely accepted consensus on what qualifies as a cancer driver gene. "People have lists of what they consider to be cancer driver genes, but there's no official reference guide, no gold standard," said Tokheim. Nevertheless, the team was able to develop a machine-learning-based method for driver gene prediction and a framework for evaluating and comparing other prediction methods.

For the study, this evaluation tool was applied to 8 existing cancer driver gene prediction methods. The results were not very reassuring. “These methods still need to get better. We're sharing our methodology publicly, and it should help others to improve their systems for identifying cancer driver genes," said Tokheim.

The study, by Tokheim CJ et al, was published December 13, 2016, in the journal Proceedings of the National Academy of Sciences.

Related Links:
Johns Hopkins University


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.