We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Healthy-Looking Prostate Cells Mask Cancer-Causing Mutations

By LabMedica International staff writers
Posted on 18 Mar 2015
Genome-wide DNA sequencing has been used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of individuals.

Prostate cancer is often made up of many small tumors with different genetic fingerprints, and it is still unclear what causes these different tumors to develop in the prostate at the same time, but new studies provides a piece of the puzzle that could help solve the mystery.

A large team of scientists led by the Institute of Cancer Research (London, UK) collected samples for analysis from prostatectomy patients. More...
Prostates were sliced and processed and a single 5-mm slice of the prostate was selected for analysis purposes, and 4-mm or 6-mm cores were taken from the slice and frozen. Frozen cores were mounted vertically and sectioned transversely to create one 5-μm frozen section for staining and six 50-μm sections for DNA preparation.

The V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog (ERG) fluorescence in situ hybridization (FISH) break-apart assay for assessing ERG gene rearrangement was performed. DNA was extracted from 18 samples from three subjects: 12 prostate cancer samples; three adjacent, morphologically normal prostate samples; and three matched bloods. Paired-end genome-wide sequencing (GWS) of the samples was also performed. Targeted polymerase chain reaction (PCR) and sequencing of selected mutations and structural variants were analyzed for each sample using a MiSeq sequencer (Illumina, Inc.; San Diego, CA, USA).

The results suggest that large numbers of normal-looking prostate cells have a variety of genetic faults and cancer could develop from any of them. This could explain why prostate cancer is often made up from multiple genetically different tumors and suggests that prostate cancer development begins earlier than scientists thought. The findings may lead to a rethink of prostate cancer treatment, in which these precancerous cells are destroyed at the same time as the tumor cells.

Rosalind Eeles, FMedSci, MA, FCRP, FRCR, PhD, a professor of Oncogenetics and senior author of the study said, “When we examine the cells that lie close to prostate cancer under the microscope, we look at their shape, size and relationship to surrounding cells. If everything appears normal then we may assume that we're looking at healthy tissue. But thanks to genetic sequencing we've shown that some of these normal-looking cells are already carrying genetic mistakes that are linked to the cancer nearby. This study helps us understand more about the beginnings of prostate cancer, so we can tackle the disease at its roots.” The study was published on March 2, 2015, in the journal Nature Genetics.

Related Links:
The Institute of Cancer Research 
Illumina, Inc.



Gold Member
Automated MALDI-TOF MS System
EXS 3000
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.