Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Innovative Diagnostic Approach for Bacterial Infections to Enable Faster and Effective Treatment

By LabMedica International staff writers
Posted on 21 Oct 2024

For patients with bacterial infections, timely treatment with the appropriate antibiotics significantly improves their chances of recovery. Current methods for identifying which antibiotics will be effective for each patient involve culturing bacteria from the patient in a laboratory, a process that takes several days to provide results. During this time, patients are often prescribed broad-spectrum antibiotics, which can create drug-resistant infections—a major public health concern. Now, an innovative diagnostic approach could potentially enable patients with bacterial infections to receive the most effective treatment more quickly, thereby reducing the reliance on broad-spectrum antibacterials.

The method, named Genotypic and Phenotypic Antibiotic Susceptibility Testing through RNA detection, or GoPhAST-R, has been developed by researchers at the Broad Institute of MIT and Harvard, in collaboration with Massachusetts General Hospital (Cambridge, MA, USA). This technique analyzes both the growth and genetic activity of bacteria to quickly assess the pathogen's susceptibility to various antibiotics. In the GoPhAST-R approach, bacterial samples are exposed to a range of antibiotics, after which an RNA detection platform is used to identify distinct patterns of change in messenger RNA expression, which indicate differences in bacterial gene activity. These mRNA changes occur within minutes of antibiotic exposure in drug-susceptible bacteria, while they do not appear in drug-resistant strains. Additionally, the method investigates genes associated with antibiotic resistance, providing insights into the underlying bacterial mechanisms and suggesting potential therapeutic options. The researchers have also demonstrated the approach's effectiveness in a pilot study involving blood cultures from patients receiving inpatient treatment for infections.

In their previous work with a limited number of patient samples, the research team demonstrated that GoPhAST-R could ascertain antibiotic susceptibility in under four hours after bacteria were detected in a blood culture, compared to 28-40 hours using conventional clinical laboratory techniques. In the new study, they expanded the clinical pilot to encompass blood samples from 42 patients hospitalized with infections caused by Escherichia coli or Klebsiella pneumoniae, which are among the most common pathogens responsible for bloodstream infections. The researchers exposed the blood cultures to nine different antibiotics from three distinct classes and subsequently conducted transcriptional profiling on the NanoString platform. They analyzed mRNA changes in 10 genes for each antibiotic class, along with a select few genes that confer resistance to beta-lactam antibiotics. According to a paper published on the pre-print server medRxiv and findings reported in the Journal of Clinical Microbiology, their results demonstrated 95% agreement with those obtained from gold-standard growth-based assays for antibiotic susceptibility.

"In this pilot, we've shown that GoPhAST-R is an approach that can work well in the clinic," said study senior author Roby Bhattacharyya, an associate member at the Broad Institute of MIT and Harvard. "The next step will be to show GoPhAST-R's utility in making decisions about patient care in real time. We'd love to one day see it as an assay that can be employed in hospitals everywhere, to help patients get more effective treatments without promoting drug resistance."

Related Links:
Broad Institute of MIT and Harvard

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultrasonic Cleaner
UC 300 Series
New
HbA1c Test
HbA1c Rapid Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.