We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Rapid Antimicrobial Susceptibility Test Returns Results within 30 Minutes

By LabMedica International staff writers
Posted on 29 Nov 2023

In 2019, antimicrobial resistance (AMR) was responsible for the deaths of approximately 1. More...

3 million individuals. The conventional approach for testing antimicrobial susceptibility involves cultivating bacterial colonies with antibiotics, a process that is notably time-consuming, often taking several days to gauge bacterial resistance to a spectrum of antibiotics. This delay poses a significant challenge in urgent medical situations, like sepsis, where prompt treatment is crucial. As a result, clinicians are often compelled to either rely on their clinical judgment to prescribe specific antibiotics or administer a broad-spectrum antibiotic regimen. However, the use of ineffective antibiotics can exacerbate infections and potentially lead to increased AMR in the community. Now, researchers have reported significant progress in developing a rapid antimicrobial susceptibility test that can deliver results in as little as 30 minutes, marking a huge improvement over current standard methods.

A team of researchers from the University of Oxford (Oxford, UK) has created a method combining fluorescence microscopy with artificial intelligence (AI) to detect AMR. This technique involves training deep-learning models to scrutinize images of bacterial cells and identify structural changes when exposed to antibiotics. The method proved successful with various antibiotics, demonstrating a minimum accuracy of 80% on a per-cell analysis. The team applied this method to various clinical strains of E. coli, each exhibiting different resistance levels to the antibiotic ciprofloxacin. Impressively, the deep-learning models consistently and accurately identified antibiotic resistance, achieving results at least tenfold faster than current leading clinical methods.

With further development, this rapid testing method has the potential to enable more precise antibiotic treatments, reducing treatment durations, lessening side effects, and helping to curb the growth of AMR. The research team envisions future adaptations of this model for detecting resistance in clinical samples to a broader range of antibiotics. Their goal is to enhance the speed and scalability of this method for clinical application, as well as to modify it for use with various types of bacteria and antibiotics.

“Antibiotics that stop the growth of bacterial cells also change how cells look under a microscope, and affect cellular structures such as the bacterial chromosome,” said Achillefs Kapanidis, Professor of Biological Physics and Director of the Oxford Martin Program on Antimicrobial Resistance Testing. “Our AI-based approach detects such changes reliably and rapidly. Equally, if a cell is resistant, the changes we selected are absent, and this forms the basis for detecting antibiotic resistance.”

Related Links:
University of Oxford


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Urine Drug Test
Instant-view® Phencyclidine Urine Drug Test
New
Vasculitis Diagnostic Test
AESKULISA Vasculitis-Screen
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: Ear wax could be a possible screening medium for Parkinson’s disease (Photo courtesy of 123RF)

Earwax Test Accurately Detects Parkinson’s by Identifying Odor Molecules

Current tests for Parkinson’s disease (PD) rely heavily on clinical scales and neuroimaging, which are often subjective, expensive, and ill-suited for routine screening. Since most treatments only slow... Read more

Molecular Diagnostics

view channel
Image: Cord blood proteomics can identify biomarkers of early-onset neonatal sepsis (Photo courtesy of JCI Insight (2025). DOI: 10.1172/jci.insight.193826)

Umbilical Cord Blood Test Can Detect Early Sepsis in Preterm Infants

Diagnosing early onset sepsis (EOS) in preterm infants is particularly difficult due to the lack of specific clinical signs, leading to widespread use of antibiotics while awaiting culture results.... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: NGS can detect one tumor cell among a million healthy cells from a simple blood sample (Photo courtesy of Shutterstock)

New Tool Detects Breast Cancer Relapses Five Years in Advance

Relapse detection in patients with solid tumors—particularly hormone receptor-positive (HR+) breast cancer—remains a major clinical challenge, as many patients initially respond well to treatment but later... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.