We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Rapid Antimicrobial Susceptibility Test Returns Results within 30 Minutes

By LabMedica International staff writers
Posted on 29 Nov 2023

In 2019, antimicrobial resistance (AMR) was responsible for the deaths of approximately 1. More...

3 million individuals. The conventional approach for testing antimicrobial susceptibility involves cultivating bacterial colonies with antibiotics, a process that is notably time-consuming, often taking several days to gauge bacterial resistance to a spectrum of antibiotics. This delay poses a significant challenge in urgent medical situations, like sepsis, where prompt treatment is crucial. As a result, clinicians are often compelled to either rely on their clinical judgment to prescribe specific antibiotics or administer a broad-spectrum antibiotic regimen. However, the use of ineffective antibiotics can exacerbate infections and potentially lead to increased AMR in the community. Now, researchers have reported significant progress in developing a rapid antimicrobial susceptibility test that can deliver results in as little as 30 minutes, marking a huge improvement over current standard methods.

A team of researchers from the University of Oxford (Oxford, UK) has created a method combining fluorescence microscopy with artificial intelligence (AI) to detect AMR. This technique involves training deep-learning models to scrutinize images of bacterial cells and identify structural changes when exposed to antibiotics. The method proved successful with various antibiotics, demonstrating a minimum accuracy of 80% on a per-cell analysis. The team applied this method to various clinical strains of E. coli, each exhibiting different resistance levels to the antibiotic ciprofloxacin. Impressively, the deep-learning models consistently and accurately identified antibiotic resistance, achieving results at least tenfold faster than current leading clinical methods.

With further development, this rapid testing method has the potential to enable more precise antibiotic treatments, reducing treatment durations, lessening side effects, and helping to curb the growth of AMR. The research team envisions future adaptations of this model for detecting resistance in clinical samples to a broader range of antibiotics. Their goal is to enhance the speed and scalability of this method for clinical application, as well as to modify it for use with various types of bacteria and antibiotics.

“Antibiotics that stop the growth of bacterial cells also change how cells look under a microscope, and affect cellular structures such as the bacterial chromosome,” said Achillefs Kapanidis, Professor of Biological Physics and Director of the Oxford Martin Program on Antimicrobial Resistance Testing. “Our AI-based approach detects such changes reliably and rapidly. Equally, if a cell is resistant, the changes we selected are absent, and this forms the basis for detecting antibiotic resistance.”

Related Links:
University of Oxford


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The VeraBIND Tau assay is a novel blood test that identifies the presence of active tau pathology (Photo courtesy of 123RF)

First Blood-Based Test Measures Key Alzheimer's Biomarker in Asymptomatic and Symptomatic Individuals

Alzheimer’s disease (AD), the sixth leading cause of death in the United States, affects an estimated 7.2 million Americans aged 65 or older. Current diagnostic methods for AD are often invasive, expensive,... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.