We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Integrated Solution for Rapid AST Directly From Positive Blood Cultures to Combat Bloodstream Infection

By LabMedica International staff writers
Posted on 29 Sep 2023
Print article
Image: On-chip pretreatment and rapid AST based directly on positive blood cultures (Photo courtesy of Liu Yang)
Image: On-chip pretreatment and rapid AST based directly on positive blood cultures (Photo courtesy of Liu Yang)

The presence of living bacteria in the bloodstream, known as bacteremia, can lead to serious conditions like bloodstream infections (BSIs) and sepsis, which can often be fatal. Quickly prescribing the right antibiotics is crucial for reducing the risk of death in patients with BSIs. Traditional methods for antimicrobial susceptibility testing (AST) to guide these prescriptions can take a long time, leaving doctors to depend mostly on their own expertise. To tackle this issue, researchers have come up with a specialized microfluidic chip called the BSI-AST chip. This chip can extract bacteria and perform AST directly from positive blood cultures in under 3.5 hours, offering a faster and more effective approach to managing BSIs.

Existing AST techniques take a minimum of two days to provide results after a blood culture tests positive for bacteria. This delay pushes healthcare providers to prescribe broad-spectrum antibiotics without waiting for test results, which could worsen the patient's condition and contribute to antibiotic resistance. In response to this urgent need, a group of researchers, including scientists from the Chinese Academy of Sciences (CAS, Beijing, China), have developed the BSI-AST chip. This chip is capable of isolating bacteria from a positive blood culture in just 10 minutes, and completing the AST in an additional three hours. In a proof-of-concept experiment, the chip successfully performed AST on artificial positive blood cultures containing E. coli, and was tested against 18 different antibiotics, all within less than 3.5 hours.

The BSI-AST chip was also tested with actual clinical positive blood cultures and showed a 93.3% agreement with conventional clinical testing methods. This chip's quick and reliable results demonstrate its immense potential for use in clinical settings. What sets this chip apart is that it can operate directly on positive blood cultures without needing an additional subculture step. This is achieved through the introduction of a separating gel into the microfluidic chip for the first time. Centrifugal microfluidic enrichment technology also played a key role. Additionally, the chip can perform multiple analyses simultaneously through antibiotic drying and parallel array techniques, helping doctors make better antibiotic choices for their BSI patients. The chip can also be easily integrated with Clinical Antimicrobial Susceptibility Test Ramanometry (CAST-R), another invention from the same team, to provide a streamlined solution for sample pretreatment.

"Rapid AST in blood culture is significant for patients with clinical sepsis and has the potential to save lives," said Prof. Cheng Yongqiang, the study's corresponding author, who also noted the role of such technology in combating the serious threat of microbial resistance to humanity.

Related Links:
CAS 

Platinum Supplier
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Gold Supplier
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Ventilated Table-Top Centrifuge
MPW-380

Print article

Channels

Clinical Chemistry

view channel
Image: A module with eight micro-devices, complete with microfluidic channels and drive motors (Photo courtesy of U.S Department of Energy)

Highly Sensitive pH Sensor to Aid Detection of Cancers and Vector-Borne Viruses

Understanding the acidity or alkalinity of substances through pH measurement is crucial in many fields, from environmental monitoring to healthcare product safety. In many cases, these measurements must... Read more

Molecular Diagnostics

view channel
Image: The PrismRA blood test helps target best treatments for patients with rheumatoid arthritis (Photo courtesy of Scipher Medicine)

Groundbreaking Rheumatoid Arthritis Blood Test Predicts Treatment Response

Rheumatoid arthritis (RA), an autoimmune disease affecting joints and other systems in the body, impacts millions globally. Typically, the initial biologic treatment involves anti-inflammatory drugs from... Read more

Hematology

view channel
Image: The QScout hematology analyzer has received US FDA 510(k) clearance (Photo courtesy of Ad Astra Diagnostics)

First Rapid-Result Hematology Analyzer Reports Measures of Infection and Severity at POC

Sepsis, a critical medical condition that arises as an extreme response to infection, poses a significant health threat. It occurs when an infection triggers a widespread inflammatory response in the body.... Read more

Immunology

view channel
Image: PointCheck is the world’s first device for non-invasive white cell monitoring (Photo courtesy of Leuko Labs)

World’s First Portable, Non-Invasive WBC Monitoring Device to Eliminate Need for Blood Draw

One of the toughest challenges for cancer patients undergoing chemotherapy is experiencing a low count of white blood cells, also known as neutropenia. These cells play a crucial role in warding off infections.... Read more

Pathology

view channel
Image: AI methods used in satellite imaging can help researchers analyze tumor images (Photo courtesy of Karolinska Institutet)

AI Approach Combines Satellite Imaging and Ecology Techniques for Analysis of Tumor Tissue

Advancements in tumor imaging technology have significantly enhanced our ability to observe the minute details of tumors, but this also brings the challenge of interpreting vast amounts of data generated... Read more

Industry

view channel
Image: The acquisition significantly expands Medix Biochemica’s portfolio of IVD raw materials (Photo courtesy of ViroStat)

Medix Biochemica Acquires US-Based ViroStat to Expand Infectious Diseases Antibody Offering

Medix Biochemica (Espoo, Finland), a supplier of critical raw materials to the in vitro diagnostics (IVD) industry, has acquired ViroStat LLC (Portland, ME, USA), a provider of infectious disease antibodies... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.