We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Rapid Sepsis Test Uses Magnetic Nanoparticles to Detect Bacterial Pathogens

By LabMedica International staff writers
Posted on 24 Aug 2023

When it comes to life-threatening blood poisoning caused by staphylococcus bacteria, quick identification of the bacteria in the bloodstream is vital to begin life-saving treatment. More...

This urgency stems from the fact that staphylococcal sepsis results in fatality for up to 40% of cases. The infection, triggered by spherical bacteria, might initially manifest as a local skin ailment or pneumonia. However, when staphylococci infiltrate the bloodstream during sepsis, severe complications can emerge. In such critical scenarios, prompt identification of pathogens and selection of suitable antibiotics are vital. This is especially crucial as Staphylococcus aureus strains can exhibit resistance to multiple antibiotics. Researchers have now developed "sepsis sensors" using magnetic nanoparticles that enable rapid detection of bacterial pathogens and identification of appropriate antibiotic candidates.

Researchers at Empa (Dübendorf, Switzerland), along with their colleagues from ETH Zurich (Zürich, Switzerland), looked for a way to bypass the lengthy intermediate step of first cultivating the bacteria in a blood sample for a diagnostic procedure. They developed a method utilizing magnetic nanoparticles that are capable of binding to staphylococci. Consequently, these bacteria can be identified through the application of a magnetic field. Subsequently, antibiotic sensitivity is assessed using a chemiluminescence technique. If antibiotic-resistant bacteria are present in the sample, it emits light. Conversely, if the bacteria can be eradicated with antibiotics, the reaction vessel remains dark.

Another problematic bacterial entity is Pseudomonas aeruginosa, a rod-shaped bacterium capable of causing various illnesses, including urinary tract infections via catheterization during hospital stays. Such infections can develop into sepsis, and these pathogens are often resistant to numerous antibiotics. In such cases, magnetic nanoparticles offer the distinct advantage of versatility. The approach can be customized for different bacteria types, similar to a modular system. This adaptability enabled the researchers to design a rapid "sepsis sensor" leveraging magnetic nanoparticles. In samples containing synthetic urine, this method reliably identified bacterial species and gauged potential antibiotic resistance through chemiluminescence reactions. So far, the researchers have assessed their magnetic nanoparticle toolkit for sepsis and urinary tract infections using laboratory samples. In the coming phase, the team plans to validate the sepsis tests alongside their clinical partners by analyzing patient samples.

"All in all, the sepsis test takes around three hours – compared to several days for a classic cultivation of bacterial cultures," said Empa researcher Fei Pan.

Related Links:
Empa 
ETH Zurich 


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.