We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Insight into Rapid Evolution of AMR in Patients Calls for Shift in Diagnostic Testing Approaches

By LabMedica International staff writers
Posted on 01 Aug 2023
Print article
Image: A study has revealed new mechanism for rapid evolution of multi-drug resistant infections in patients (Shutterstock)
Image: A study has revealed new mechanism for rapid evolution of multi-drug resistant infections in patients (Shutterstock)

A groundbreaking research study has offered novel insights into the development of antimicrobial resistance (AMR) in patients suffering from bacterial infections. This could lead to more effective preventative strategies against AMR infections in susceptible individuals. Contrary to the conventional belief that infection typically occurs due to a single strain of bacteria that develops resistance through new genetic mutations, the study suggests that patients often get co-infected by multiple clones of pathogens. In these cases, resistance arises from the selection of already resistant clones rather than new mutations.

In the study led by the University of Oxford (Oxford, UK), the researchers utilized an innovative technique to examine genetic alterations and antibiotic resistance in Pseudomonas aeruginosa, a common hospital-acquired bacterium, particularly among immunocompromised and severely ill individuals. Samples were taken from 35 patients in intensive care units across 12 European hospitals. Approximately two-thirds of the patients were found to be infected by a single strain of Pseudomonas, in some of which AMR developed due to new mutations, as traditionally believed. However, in a surprising revelation, one-third of patients were infected by multiple strains of the bacteria. It was observed that patients with mixed-strain infections exhibited a roughly 20% higher increase in resistance when exposed to antibiotic treatment compared to those with single-strain infections. The spike in resistance was primarily attributed to the selection of pre-existing resistant strains that already existed prior to antibiotic therapy.

Interestingly, the study also found that such resistance could decline rapidly under certain conditions. When samples from single-strain and mixed-strain infections were cultured without antibiotics, the growth rate of AMR strains was slower compared to non-AMR strains. This supports the idea that AMR genes carry fitness trade-offs and are negatively selected when antibiotics are absent. This effect was more pronounced in mixed strain populations, suggesting that a diverse bacterial environment could contribute to resistance loss in the absence of antibiotics.

The findings suggest that strategies focusing on controlling bacterial transmission among patients, such as improved sanitation and infection control measures, might be more effective against AMR compared to efforts to prevent new resistance mutations. This is particularly important in settings with a high infection rate, like immunocompromised individuals. Additionally, the study calls for a shift in clinical testing, emphasizing the importance of considering pathogen strain diversity instead of assuming a singular strain during infection assessments. This approach could aid in making more accurate predictions about antibiotic treatment effectiveness and improve patient outcomes, similar to the use of diversity measurements in cancer cell populations to predict chemotherapy success.

"The diagnostic methods employed for assessing antibiotic resistance in patient samples have undergone slow evolution over time, and our findings highlight the significance of developing new diagnostic approaches that facilitate the assessment of pathogen population diversity in patient samples," said Professor Craig Maclean, the lead researcher from the University of Oxford's Department of Biology.

Related Links:
University of Oxford 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Rickettsia Conorii Assay
RICKETTSIA CONORII ELISA

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.