We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Siemens Healthineers - Laboratory Diagnostics

Download Mobile App




New Insight into Rapid Evolution of AMR in Patients Calls for Shift in Diagnostic Testing Approaches

By LabMedica International staff writers
Posted on 01 Aug 2023
Print article
Image: A study has revealed new mechanism for rapid evolution of multi-drug resistant infections in patients (Shutterstock)
Image: A study has revealed new mechanism for rapid evolution of multi-drug resistant infections in patients (Shutterstock)

A groundbreaking research study has offered novel insights into the development of antimicrobial resistance (AMR) in patients suffering from bacterial infections. This could lead to more effective preventative strategies against AMR infections in susceptible individuals. Contrary to the conventional belief that infection typically occurs due to a single strain of bacteria that develops resistance through new genetic mutations, the study suggests that patients often get co-infected by multiple clones of pathogens. In these cases, resistance arises from the selection of already resistant clones rather than new mutations.

In the study led by the University of Oxford (Oxford, UK), the researchers utilized an innovative technique to examine genetic alterations and antibiotic resistance in Pseudomonas aeruginosa, a common hospital-acquired bacterium, particularly among immunocompromised and severely ill individuals. Samples were taken from 35 patients in intensive care units across 12 European hospitals. Approximately two-thirds of the patients were found to be infected by a single strain of Pseudomonas, in some of which AMR developed due to new mutations, as traditionally believed. However, in a surprising revelation, one-third of patients were infected by multiple strains of the bacteria. It was observed that patients with mixed-strain infections exhibited a roughly 20% higher increase in resistance when exposed to antibiotic treatment compared to those with single-strain infections. The spike in resistance was primarily attributed to the selection of pre-existing resistant strains that already existed prior to antibiotic therapy.

Interestingly, the study also found that such resistance could decline rapidly under certain conditions. When samples from single-strain and mixed-strain infections were cultured without antibiotics, the growth rate of AMR strains was slower compared to non-AMR strains. This supports the idea that AMR genes carry fitness trade-offs and are negatively selected when antibiotics are absent. This effect was more pronounced in mixed strain populations, suggesting that a diverse bacterial environment could contribute to resistance loss in the absence of antibiotics.

The findings suggest that strategies focusing on controlling bacterial transmission among patients, such as improved sanitation and infection control measures, might be more effective against AMR compared to efforts to prevent new resistance mutations. This is particularly important in settings with a high infection rate, like immunocompromised individuals. Additionally, the study calls for a shift in clinical testing, emphasizing the importance of considering pathogen strain diversity instead of assuming a singular strain during infection assessments. This approach could aid in making more accurate predictions about antibiotic treatment effectiveness and improve patient outcomes, similar to the use of diversity measurements in cancer cell populations to predict chemotherapy success.

"The diagnostic methods employed for assessing antibiotic resistance in patient samples have undergone slow evolution over time, and our findings highlight the significance of developing new diagnostic approaches that facilitate the assessment of pathogen population diversity in patient samples," said Professor Craig Maclean, the lead researcher from the University of Oxford's Department of Biology.

Related Links:
University of Oxford 

New
Platinum Supplier
Xylazine Immunoassay Test
Xylazine ELISA
New
Gold Supplier
Foam Tipped Applicator
PurSwab 5"
New
Clinical Chemistry Reagents
Clinical Chemistry Reagents
New
Measles Virus Antibody Test
Chorus MEASLES IgG

Print article
GLOBETECH PUBLISHING LLC

Channels

Clinical Chemistry

view channel
Image: The new assays are designed to run on the B•R•A•H•M•S KRYPTOR compact PLUS clinical chemistry analyzer (Photo courtesy of Thermo Fisher)

Breakthrough Immunoassays to Aid in Risk Assessment of Preeclampsia

Preeclampsia is a life-threatening blood pressure condition that can arise during pregnancy and the postpartum phase. This severe pregnancy complication is a primary cause of maternal and fetal mortality... Read more

Molecular Diagnostics

view channel
Image: A CRISPR technology-based diagnostic test detects MPXV in clinical samples with acute precision (Photo courtesy of 123RF)

Powerful Diagnostic Tool Accurately Detects Monkeypox Virus Faster Than Any Method

At present, testing for the monkeypox virus (MPXV) is done mainly in centralized labs, and it can take days to get results due to location and logistical issues. Now, researchers have leveraged cutting-edge... Read more

Hematology

view channel
Image: The US FDA has cleared HemoScreen point of care CBC for direct capillary sampling (Photo courtesy of PixCell Medical)

Point of Care CBC Analyzer with Direct Capillary Sampling Enhances Ease-of-Use and Testing Throughput

The world’s only 5-part differential Complete Blood Count (CBC) analyzer that is FDA-cleared, CE-marked, and TGA-approved for point-of-care use has now been granted FDA 510(k) clearance for direct capillary... Read more

Immunology

view channel
Image: Immune cells present long before infection predict flu symptoms (Photo courtesy of Shutterstock.com)

Single Blood Draw to Detect Immune Cells Present Months before Flu Infection Can Predict Symptoms

For decades, if not centuries, scientists have struggled to solve the mystery of why certain individuals fall ill to infections while others remain unaffected. In an impressive development, researchers... Read more

Pathology

view channel
Image: The Tasso+ device has received CE Mark certification (Photo courtesy of Tasso)

Groundbreaking Blood Lancing Device Obtains Microliter Capillary Whole Blood Samples Painlessly

A convenient, virtually pain-free blood lancet that collects whole liquid blood samples has received CE Mark designation, making the patient-centric, high-volume blood collection solution available in... Read more

Technology

view channel
Image: A new electrochemical device can quickly and inexpensively identify people at greatest risk for osteoporosis (Photo courtesy of ACS Central Science, 2023)

Electrochemical Device Identifies People at Higher Risk for Osteoporosis Using Single Blood Drop

With the global increase in life expectancy, the incidence of age-related conditions like osteoporosis is increasing. Osteoporosis, affecting around 200 million individuals worldwide, has a higher incidence... Read more

Industry

view channel
Image: The global fully automatic electrolyte analyzers market is projected to reach close to USD 0.77 billion by 2032 (Photo courtesy of 123RF)

Global Fully Automatic Electrolyte Analyzers Market Driven by Surge in Demand for Point-of-Care Testing

Fully automatic electrolyte analyzers can measure the levels of electrolytes in various bodily fluids like blood and plasma. Electrolytes are ions that have an electrical charge and are essential for multiple... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.