We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Rapid Test Uses Bacteria-Infecting Viruses to Accurately Identify UTI-Causing Pathogens

By LabMedica International staff writers
Posted on 31 Jul 2023

Cystitis affects approximately 50% of women at some point in their lives, with many experiencing recurring urinary tract infections. More...

These bladder infections not only cause pain and potential complications but also present a significant challenge to healthcare providers. The rampant spread of antibiotic resistance in urinary tract infections often forces physicians to prescribe antibiotics indiscriminately without awareness of their effectiveness against the infection-causing pathogen. This is largely due to the lengthy period taken by conventional diagnostic methods to identify specific pathogens. Now, scientists have developed a rapid test that uses bacteriophages, viruses that naturally prey on bacteria, and have also altered them genetically to further increase their effectiveness in destroying pathogenic bacteria.

Bacteriophages, or simply phages, are highly specialized viruses. Each phage species infects only a particular bacterial type or strain. Scientists at ETH Zurich (Zurich, Switzerland) have harnessed this unique feature to develop a rapid test and a new therapeutic approach for urinary tract infections. Their initial step was identifying the most potent phages against the three primary bacteria types associated with urinary tract infections: Escherichia coli, Klebsiella, and Enterococci. The researchers then altered these naturally occurring phages in order to trigger the bacteria they recognize and infect to emit an easily detectable light signal. Using this technique, the researchers could reliably identify the disease-causing bacteria directly from a urine sample within four hours. This novel method could enable immediate prescription of the appropriate antibiotic after diagnosis, minimizing resistance development and promoting better antibiotic management.

The new method offers another advantage: it enables physicians to determine which patients might particularly benefit from personalized phage therapy, as the light signal strength in the assay indicates the phages' effectiveness in attacking the bacteria – the brighter the sample, the better the response to therapy. In a proof of concept study, the researchers enhanced the phages' efficacy by genetically modifying them. The altered phages not only generate new phages inside the host bacterium but also bacteriocins. These bacteria-killing proteins are especially potent against bacterial strains that have modified their surface parts to evade phage recognition, offering a two-pronged attack for enhanced treatment efficacy.

Nonetheless, the widespread application of such therapies in Western countries still has considerable obstacles to overcome. Aside from comprehensive clinical trials, regulatory amendments acknowledging phages as evolving biological entities that co-evolve with their bacterial hosts would be beneficial. The researchers' next step will involve testing the newly-developed phage therapy's efficacy in a clinical trial involving selected patients.

Related Links:
ETH Zurich


Gold Member
Automated MALDI-TOF MS System
EXS 3000
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.