We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Nanopore Sequencing Detect Pathogens in Knee Periprosthetic Joint Infection

By LabMedica International staff writers
Posted on 05 Jan 2023

The number of total knee arthroplasty (TKA) is currently increasing substantially, and it is expected to increase more than two times in the next decade worldwide. More...

With the increasing number of TKA, the number of prosthetic joint infections (PJIs) is also increasing, and PJI is currently regarded as the most common etiology for revision TKA.

Identification of the infecting pathogen is critical to the successful management of PJI. Currently, microbial culture is the principal diagnostic test for determining the infecting microorganism. Due to the insidious onset of PJI, early and accurate diagnosis is crucial; late diagnosis is known to decrease the chance of saving the prosthesis and the joint function, leading to more bone destruction and difficulty in revision surgery.

Orthopaedic Surgeons at the Seoul National University College of Medicine (Seoul, South Korea) and their colleagues enrolled in a study, 36 patients who had clinical manifestation suspected of PJI. Synovial fluids were aspirated from the affected knee using aseptic technique and tissues specimens were obtained during the surgery. Fluid samples were aspirated from the affected knee of each patient and inoculated separately into conical tube, aerobic and anaerobic BACT/ALERT® culture bottles (bioMérieux, Durham, NC, USA).

Bacterial identification from culture isolates was performed using MicroScan (Beckman Coulter, Inc., Atlanta, GA, USA) for Gram-positive bacteria and the VITEK2 system (bioMérieux, Inc.) for Gram-negative bacteria. The DNA was extracted from the aspirated fluid samples or intraoperative tissue specimens. The full-length 16S rDNA (∼1500 bp) PCR was performed using the Bacterial 16S rDNA PCR Kit (Takara, Tokyo, Japan) for each sample. When the 16S rDNA PCR result was positive nanopore amplicon sequencing (Oxford Nanopore Technologies, Oxford, UK) was then performed for up to 3 hours. The results of amplicon sequencing were compared to those of conventional culture studies.

The investigators reported that of the 36 patients enrolled, 22 were classified as true infections according to the MSIS criteria whereas 14 were considered uninfected. Among the 22 PJI cases, 19 cases were culture positive (CP-PJI) while three cases were culture negative (CN-PJI). In 14 of 19 (73.7 %) CP- PJI cases, 16S sequencing identified concordant bacteria with conventional culture studies with a significantly shorter turnaround time. In some cases, nanopore 16S sequencing was superior to culture studies in the species-level identification of pathogen and detection of polymicrobial infections. Altogether, in the majority of PJI candidate patients (32 of 36, 88.9 %), 16S sequencing achieved identical results to cultures studies with a significantly reduced turnaround time (100.9 ± 32.5 hours versus 10.8 ± 7.7 hours).

The authors concluded that Nanopore 16S sequencing was found to be particularly useful for pathogen identification in knee PJI. Although the sensitivity was not superior to culture studies, the nanopore 16S sequencing was much faster and species-level identification and detection of polymicrobial infections were superior to culture studies. The study was published in the December 2022 issue of the International Journal of Medical Microbiology.

Related Links:
Seoul National University College of Medicine
bioMérieux
Beckman Coulter
Takara
Oxford Nanopore Technologies 


New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Portable Electronic Pipette
Mini 96
Rapid Molecular Testing Device
FlashDetect Flash10
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The genomic test measures eight gene activities in a melanoma tumor and combines this data with patient factors like age and tumor thickness (Photo courtesy of 123RF)

Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients

Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.