We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us


Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Direct Real-Time PCR Protocol Detects Monkeypox Virus

By LabMedica International staff writers
Posted on 16 Nov 2022
Print article
Image: The Applied Biosystems Quant Studio 6 Pro Real-Time PCR System adds innovative smart features to the real-time PCR (qPCR) workflow, all in a compact footprint (Photo courtesy of Thermo Fisher Scientific)
Image: The Applied Biosystems Quant Studio 6 Pro Real-Time PCR System adds innovative smart features to the real-time PCR (qPCR) workflow, all in a compact footprint (Photo courtesy of Thermo Fisher Scientific)

Monkeypox virus, an encapsulated double-stranded DNA virus and member of the Poxviridae family, is responsible for the recent monkeypox outbreak that has been declared a public health emergency of international concern.

Prompt identification of infected individuals followed by contact tracing is important for stemming the spread of disease. The characteristic rash of monkeypox progresses through multiple stages, beginning with a macular phase, progressing through papular, vesicular, and pustular phases, and ending with a scab phase.

Clinical Pathologists at the Feinberg School of Medicine (Chicago, IL, USA) collected clinical specimens from patients at locations within the Northwestern Medicine health system. Lesions were swabbed with sterile synthetic swabs, and the swabs were submitted to the laboratory dry or in 3 mL of viral transport media (M4 VTM). Dry swabs received by the laboratory were immediately added to 3 mL of M4 VTM. At the start of the monkeypox outbreak, a total of 20 samples identified as positive by the direct assay and 20 samples identified as negative by the direct assay were sequentially chosen for confirmation by indirect method. DNA extraction for the indirect method was performed using the Qiagen manual DNA extraction kit utilizing spin-column–based nucleic acid purification (Qiagen, Germantown MD, USA).

A modified multiplex version of the CDC monkeypox assay was performed for clinical validation purposes. Previously published probe and primers targeting monkeypox were used. After processing, this was followed by real-time PCR on the Quant Studio 6 instrument (Thermo Fisher Scientific, Waltham, MA, USA). Cycling conditions included a 20-second activation step at 95 °C, followed by 40 cycles of 3 seconds at 95 °C and 30 seconds at 60°C.

The investigators generated a standard curve was by diluting plasmid monkeypox control DNA to concentrations ranging from 1 to 1,000,000 copies/mL and determining the corresponding CT value. The assay displayed excellent linearity (R2 = 0.9994). The limit of detection was determined by replicate determinations of CT values (n = 20) of 5, 50, and 1000 copies/mL samples. The mean CT values of 5 copies/mL were determined to be 36 on both the direct and indirect assay, with an SD of 0.75 (range, 34.61 to 37.39). The analytical specificity was determined by running the assay with control materials for 23 different viruses, bacteria, and fungi. No signal within the limit of detection was detected by the assay in any of the control materials. Blood did have an inhibitory effect on the assay, with increasing concentration of blood leading to greater inhibition. Samples with 20% blood had complete inhibition.

The authors concluded that the validation of a direct method monkeypox assay will allow laboratories to lower costs, reduce dependence on the supply chain for nucleic acid extraction kits, and decrease exposure of laboratory scientists to potentially infectious specimens. In addition, it may be suitable for incorporation into automated and high-throughput testing. This direct method will make it easier for laboratories across the world to rapidly develop, validate, and scale testing for monkeypox virus. The study was published in the November 2022 issue of The Journal of Molecular Diagnostics.

Related Links:
Feinberg School of Medicine
Thermo Fisher Scientific

Gold Supplier
Cerebral Spinal Fluid Control
Multichem CSF
H. pylori Test
H. pylori Antigen Rapid Test Kit
Automated Sample Preparation System
Silver Supplier
Real-Time PCR Thermal Cycler
Eonis Q96

Print article


Clinical Chem.

view channel
Image: Brief schematic diagram of the detection principle and method (Photo courtesy of CAS)

Rapid, Non-Invasive Method Diagnoses Type 2 Diabetes by Sniffing Urinary Acetone

Over 90% of diabetes cases are attributed to Type 2 diabetes (T2D), a prevalent metabolic condition that is expected to impact 380 million individuals globally by 2025. Despite being highly accurate, the... Read more


view channel
Image: A genetic test could guide the use of cancer chemotherapy (Photo courtesy of Pexels)

Genetic Test Predicts Whether Bowel Cancer Patients Can Benefit From Chemotherapy

Late-stage bowel cancer patients usually undergo a series of chemotherapies and targeted medicines for cancer treatment. However, the responses to the last-line chemotherapy treatment trifluridine/tipiracil... Read more


view channel
Image: Use of DBS samples can break barriers in hepatitis C diagnosis and treatment for populations at risk (Photo courtesy of Pexels)

DBS-Based Assay Effective in Hepatitis C Diagnosis and Treatment for At Risk Populations

In a bid to eliminate viral hepatitis as a public health threat by 2030, the World Health Organization (WHO) has put forth a proposed strategy. To this end, researchers at the Germans Trias i Pujol Research... Read more


view channel
Image: New research has opened a path for fast and accurate cancer diagnosis (Photo courtesy of Imagene)

AI-Based Image Analysis Software Profiles Cancer Biomarkers in Real Time

Lung cancer is the most widespread type of cancer worldwide, resulting in approximately 1.76 million fatalities annually. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer diagnoses... Read more


view channel
Image: Live view of non-fluorescent specimens using the glowscope frame (Photo courtesy of Winona State University)

Device Converts Smartphone into Fluorescence Microscope for Just USD 50

Fluorescence microscopes are utilized to examine specimens labeled with fluorescent stains or expressing fluorescent proteins, like those tagged with green fluorescent protein. However, since these microscopes... Read more


view channel
Image: The global antimicrobial resistance diagnostics market size is expected to reach USD 5.7 billion by 2028 (Photo courtesy of Pexels)

Global Antimicrobial Resistance Diagnostics Market Driven by Increasing Hospital-Acquired Infections

Antimicrobial drugs are intended to counteract the harmful effects of microbes and promote a healthy life. However, their excessive use can result in the development of resistance, commonly referred to... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.