We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Immunoassay, Mini Mass Spec Combined for Malaria Detection

By LabMedica International staff writers
Posted on 01 Nov 2022
Print article
Image: The Continuity transportable mass spectrometer brings high-sensitivity and large mass range to chemical analysis in the field (Photo courtesy of BaySpec)
Image: The Continuity transportable mass spectrometer brings high-sensitivity and large mass range to chemical analysis in the field (Photo courtesy of BaySpec)

Currently, several different technologies are available for diagnosing malaria, but each has drawbacks. PCR, for instance, is highly sensitive and specific, but it requires upfront sample processing and specialized equipment. While point-of-care and home PCR testing has come to market in recent years, these assays are quite expensive.

There are also rapid antigen tests for malaria, but these tests can be expensive. Microscopy is the traditional gold standard for diagnosing malaria, but it is labor intensive and subjective as well as technically challenging. A protein detection workflow that combines paper-based immunoassays with miniaturized mass spectrometry to enable diagnostic testing in resource-constrained areas has been developed.

Biochemists at Ohio State University (Columbus, OH, USA) used ionic probe technology for malaria detection and suggested it could be applied for large-scale surveillance and screening for the disease. The probes provide a more stable alternative to reagents used in conventional immunoassays, making them potentially useful for work in areas where cold storage is not widely available. The probes remain stable for several weeks under ambient conditions and are designed to release, upon treatment with ammonium hydroxide, mass tags that can be detected using paper spray ionization mass spectrometry.

The investigators synthesized pH-sensitive ionic probes and coupled them with monoclonal antibodies specific to the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) malaria antigen. They then used the antibody-ionic probe conjugates in a paper-based immunoassay to capture PfHRP2 antigen from untreated whole blood. After the immunoassay, the bound ionic probes were cleaved, and the released mass tags were analyzed through an on-chip paper spray mass spectrometry strategy.

The test was able to detect the malaria antigen PfHRP2 in untreated human serum at levels down to 0.216 nmol/L, below the 0.227 nmol/L sensitivity threshold recommended by the World Health Organization for evaluating symptomatic patients. In terms of cost, the test is currently more expensive than the low end of the rapid antigen market, but it is expected costs will come down once the test is fully developed and being manufactured at scale. The team used a Continuity miniature mass spectrometer (BaySpec, Jose, CA, USA).

Abraham Badu-Tawiah, PhD, a Professor of Chemistry and senior author of the study, said, “Bigger mass spectrometers need to run continuously to maintain performance. Not so with portable instruments. The portable mass spectrometer is robust and can be turned it off when not in use, and turn it on when needed. It takes only 10 minutes to get it ready for analysis.”

The authors concluded that the stability and sensitivity of the developed paper-based immunoassay platform will allow miniature mass spectrometers to be used for point-of-care malaria detection as well as in large-scale surveillance screening to aid eradication programs. The study was published on October 4 2022 in the journal Analytical Chemistry.

Related Links:
Ohio State University
BaySpec 

Gold Supplier
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
New
Auto Liquid Handling & Homogenizer Workstation
LH 96
New
Lyophilizer
FD150
New
Portable Electrolyte Analyzer
XI-951

Print article
SUGENTECH INC.

Channels

Clinical Chem.

view channel
Image: Equivalence of Genetically Elevated LDL and Lipoprotein(a) on Myocardial Infarction (Photo courtesy of Viborg Regional Hospital)

Familial Hypercholesterolemia Patients With ACD Have Elevated Lipoprotein(a)

Familial hypercholesterolemia (FH) is a genetic disorder characterized by high cholesterol levels, specifically very high levels of low-density lipoprotein (LDL cholesterol), in the blood and early cardiovascular... Read more

Molecular Diagnostics

view channel
Image: A cheap blood test could improve diagnosis of myocarditis (Photo courtesy of Queen Mary University of London)

First-Ever Blood Test Could Detect Deadly Heart Inflammation Within Hours

Myocarditis, or inflammation of the heart muscle, is a difficult condition to diagnose. Symptoms include a temperature, fatigue, chest pain and shortness of breath, which can all be easily mistaken for... Read more

Microbiology

view channel
Image: Ring-form trophozoites of Plasmodium vivax in a thin blood smear (Photo courtesy of Centers for Disease Control and Prevention)

Immune Regulators Predict Severity of Plasmodium vivax Malaria

Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules... Read more

Pathology

view channel
Image: Breast cancer spread uncovered by new molecular microscopy (Photo courtesy of Wellcome Sanger Institute)

New Molecular Microscopy Tool Uncovers Breast Cancer Spread

Breast cancer commonly starts when cells start to grow uncontrollably, often due to mutations in the cells. Overtime the tumor becomes a patchwork of cells, called cancer clones, each with different mutations.... Read more

Industry

view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.