We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Parallel Impedance Cytometry Screens Bacterial Cells in Real Time

By LabMedica International staff writers
Posted on 25 Oct 2022
Print article
Image: Schematic of the intelligent impedance system, consisting of a parallel impedance cytometry and a machine learning-based detection system (Photo courtesy of Yaxiaer Yalikun, PhD)
Image: Schematic of the intelligent impedance system, consisting of a parallel impedance cytometry and a machine learning-based detection system (Photo courtesy of Yaxiaer Yalikun, PhD)

Antibiotic-resistant infections are responsible for killing over a million people worldwide every year. Central to managing resistant infections is quickly identifying an appropriate treatment to which the infective bacteria are susceptible. Significant time is needed to determine the drug susceptibility profile of a bacterial infection.

Impedance cytometry measures the dielectric properties of individual cells with high throughput, over a thousand cells per minute. Because the electrical readout of a bacterium corresponds to its physical response to an antibiotic, one has a straightforward means of determining whether the antibiotic works against the bacteria.

Scientists at the Nara Institute of Science and Technology (Ikoma, Japan) developed a novel impedance cytometry method that simultaneously analyses the test and reference particles in separate channels, creating easily analyzable separate datasets. This cytometry had nanoscale sensitivity, allowing for detection of even minute physical changes in bacterial cells. The group designed a machine learning tool to analyze the impedance cytometry data. Because the new cytometry method splits the test and reference datasets, the machine learning tool could automatically label the reference dataset as the “learning” dataset and use it to learn the characteristics of an untreated bacterium. By real-time comparison with antibiotic-treated cells, the tool can identify whether the bacteria are susceptible to the drug and can even identify what proportion of bacterial cells are resistant in a mixed-resistance population.

Target objects can be detected even when benchmarked against similar objects. Parallel dual microchannels allow the simultaneous detection of reference and target particles in two separate microchannels, without the premixing of reference and target suspensions. The impedance pulses of both can appear separately on the opposite sides of the same time series, which have been verified via simulation and experimental results. Raw impedance signals can easily distinguish target particles from reference ones. Polystyrene beads with different sizes ranging from nano- to microscale (e.g., 500, 750 nm, 1, 2, 3, and 4.5 μm) confirm the nanosensitivity of the system. In addition, the detection of antibiotic-treated Escherichia coli cells demonstrates that the system can be used for the quantitative assessment of the dielectric properties of individual cells, as well as for the proportion of susceptible cells.

Yoichiroh Hosokawa, PhD, an Assistant Professor and a senior author of the study, said, “Although there was a misidentification error of less than 10% in our work, there was a clear discrimination between susceptible and resistant cells within two hours of antibiotic treatment.”

The authors concluded that their findings indicate that the parallel impedance cytometry can greatly facilitate the measurement and calibration of the impedances of various particles or cells and provide a means to compare their dielectric properties. The study was published on October 6, 2022 in the journal ACS Sensors.

Related Links:
Nara Institute of Science and Technology

Gold Supplier
Zika Virus Anitobody Test
Zika Virus IgM μ-capture
Lab Incubator
3-in-1 Mixer
Fecal Bacterial Test
CLART EnteroBac

Print article


Clinical Chem.

view channel
Image: Brief schematic diagram of the detection principle and method (Photo courtesy of CAS)

Rapid, Non-Invasive Method Diagnoses Type 2 Diabetes by Sniffing Urinary Acetone

Over 90% of diabetes cases are attributed to Type 2 diabetes (T2D), a prevalent metabolic condition that is expected to impact 380 million individuals globally by 2025. Despite being highly accurate, the... Read more

Molecular Diagnostics

view channel
Image: Researchers have identified the origin of subset of autoantibodies that worsen lupus (Photo courtesy of Pexels)

Lupus Biomarker Testing Could Help Identify Patients That Need Early and Aggressive Treatment

Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs when the body's antibodies, which usually protect against infections, attack healthy cells and proteins. These autoantibodies can... Read more


view channel
Image: A genetic test could guide the use of cancer chemotherapy (Photo courtesy of Pexels)

Genetic Test Predicts Whether Bowel Cancer Patients Can Benefit From Chemotherapy

Late-stage bowel cancer patients usually undergo a series of chemotherapies and targeted medicines for cancer treatment. However, the responses to the last-line chemotherapy treatment trifluridine/tipiracil... Read more


view channel
Image: Use of DBS samples can break barriers in hepatitis C diagnosis and treatment for populations at risk (Photo courtesy of Pexels)

DBS-Based Assay Effective in Hepatitis C Diagnosis and Treatment for At Risk Populations

In a bid to eliminate viral hepatitis as a public health threat by 2030, the World Health Organization (WHO) has put forth a proposed strategy. To this end, researchers at the Germans Trias i Pujol Research... Read more


view channel
Image: New research has opened a path for fast and accurate cancer diagnosis (Photo courtesy of Imagene)

AI-Based Image Analysis Software Profiles Cancer Biomarkers in Real Time

Lung cancer is the most widespread type of cancer worldwide, resulting in approximately 1.76 million fatalities annually. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer diagnoses... Read more


view channel
Image: The global antimicrobial resistance diagnostics market size is expected to reach USD 5.7 billion by 2028 (Photo courtesy of Pexels)

Global Antimicrobial Resistance Diagnostics Market Driven by Increasing Hospital-Acquired Infections

Antimicrobial drugs are intended to counteract the harmful effects of microbes and promote a healthy life. However, their excessive use can result in the development of resistance, commonly referred to... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.