We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Parallel Impedance Cytometry Screens Bacterial Cells in Real Time

By LabMedica International staff writers
Posted on 25 Oct 2022

Antibiotic-resistant infections are responsible for killing over a million people worldwide every year. More...

Central to managing resistant infections is quickly identifying an appropriate treatment to which the infective bacteria are susceptible. Significant time is needed to determine the drug susceptibility profile of a bacterial infection.

Impedance cytometry measures the dielectric properties of individual cells with high throughput, over a thousand cells per minute. Because the electrical readout of a bacterium corresponds to its physical response to an antibiotic, one has a straightforward means of determining whether the antibiotic works against the bacteria.

Scientists at the Nara Institute of Science and Technology (Ikoma, Japan) developed a novel impedance cytometry method that simultaneously analyses the test and reference particles in separate channels, creating easily analyzable separate datasets. This cytometry had nanoscale sensitivity, allowing for detection of even minute physical changes in bacterial cells. The group designed a machine learning tool to analyze the impedance cytometry data. Because the new cytometry method splits the test and reference datasets, the machine learning tool could automatically label the reference dataset as the “learning” dataset and use it to learn the characteristics of an untreated bacterium. By real-time comparison with antibiotic-treated cells, the tool can identify whether the bacteria are susceptible to the drug and can even identify what proportion of bacterial cells are resistant in a mixed-resistance population.

Target objects can be detected even when benchmarked against similar objects. Parallel dual microchannels allow the simultaneous detection of reference and target particles in two separate microchannels, without the premixing of reference and target suspensions. The impedance pulses of both can appear separately on the opposite sides of the same time series, which have been verified via simulation and experimental results. Raw impedance signals can easily distinguish target particles from reference ones. Polystyrene beads with different sizes ranging from nano- to microscale (e.g., 500, 750 nm, 1, 2, 3, and 4.5 μm) confirm the nanosensitivity of the system. In addition, the detection of antibiotic-treated Escherichia coli cells demonstrates that the system can be used for the quantitative assessment of the dielectric properties of individual cells, as well as for the proportion of susceptible cells.

Yoichiroh Hosokawa, PhD, an Assistant Professor and a senior author of the study, said, “Although there was a misidentification error of less than 10% in our work, there was a clear discrimination between susceptible and resistant cells within two hours of antibiotic treatment.”

The authors concluded that their findings indicate that the parallel impedance cytometry can greatly facilitate the measurement and calibration of the impedances of various particles or cells and provide a means to compare their dielectric properties. The study was published on October 6, 2022 in the journal ACS Sensors.

Related Links:
Nara Institute of Science and Technology


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
New
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Scout\'s patented molecular technology delivers results matching high-complexity PCR 99% of the time (Photo courtesy of Scout Health)

STI Molecular Test Delivers Rapid POC Results for Treatment Guidance

An affordable, rapid molecular diagnostic for sexually transmitted infections (STIs) has the potential to be globally relevant, particularly in resource-limited settings where rapid, point-of-care results... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.