We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Rapid COVID Test Developed Solves Problems With LAMP Sensitivity

By LabMedica International staff writers
Posted on 14 Feb 2022
Print article
Image: Equipment required for the smaRT-LAMP testing technology would cost less than USD100 (Photo courtesy of Michael Mahan, PhD)
Image: Equipment required for the smaRT-LAMP testing technology would cost less than USD100 (Photo courtesy of Michael Mahan, PhD)

Researchers from the University of California, Santa Barbara have developed an isothermal amplification-based SARS-CoV-2 and influenza test that could retail for as little as $2 while addressing a key problem with loop-mediated isothermal amplification tests — false positive results.

Loop-mediated isothermal amplification (LAMP) diagnostics have gained attention for pathogen detection because they do not require sophisticated, expensive instrumentation or highly trained personnel for operation. Five principal tenets of point-of-care (POC) clinical diagnostics include speed, sensitivity, affordability, scalability, and accessibility, without a concomitant need of specialized and costly equipment.

Numerous methods for the detection of SARS-CoV-2 virus, including molecular, antigen, and serology tests, are currently in use. Although molecular methods such as polymerase chain reaction (PCR) are rapid and sensitive, they generally require access to specialized and costly laboratory instrumentation and highly trained personnel, and they are technologically complex for POC applications or resource-limited settings.

Molecular Biotechnologists at the University of California, Santa Barbara (Santa Barbara, CA, USA) and their colleagues enrolled two subgroups of participants (symptomatic and asymptomatic) at Santa Barbara Cottage Hospital (Santa Barbara, CA, USA). The symptomatic group consisted of 20 recruited patients who tested positive for SARS-CoV-2 with symptoms; 30 asymptomatic patients were recruited from the same community, through negative admission screening tests for SARS-CoV-2. Among the 50 eligible participants with no prior SARS-CoV-2 infection included in the study, 29 were men. The mean age was 57 years (range, 21 to 93 years).

The smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) was first optimized for analysis of human saliva samples spiked with either SARS-CoV-2 or influenza A or B virus. These results then were compared with those obtained by side-by-side analysis of spiked samples using the Centers for Disease Control and Prevention (CDC, Atlanta, GA, USA) criterion-standard reverse transcriptase–quantitative polymerase chain reaction (RT-qPCR) assay. Next, both assays were used to test for SARS-CoV-2 and influenza viruses present in blinded clinical saliva samples obtained from 50 hospitalized patients.

The investigators reported that SmaRT-LAMP exhibited 100% concordance (50/50 patient samples) with the CDC criterion-standard diagnostic for SARS-CoV-2 sensitivity (20/20 positive and 30/30 negative) and for quantitative detection of viral load. This platform also met the CDC criterion standard for detection of clinically similar influenza A and B viruses in 20 spiked saliva samples, and in saliva samples from hospitalized patients (50/50 negative). The smartphone-based LAMP assay was rapid (25 minutes), sensitive (1,000 copies/mL), low-cost (< USD 7/test), and scalable (96 samples/phone).

The authors concluded that the smartphone-based LAMP assay integrates reliable diagnostics with advantages of smartphone detection, offering an inexpensive diagnostic platform for SARS-CoV-2 and influenza A and B viruses that match the CDC RT-qPCR criterion standards. The study was published on January 28, 2022 in the journal JAMA Network Open.

Related Links:
University of California, Santa Barbara 
Santa Barbara Cottage Hospital
Centers for Disease Control and Prevention 

Gold Supplier
ESR Analyzer
3-DIFF Hematology Analyzer
Gold Supplier
NT-proBNP Quantitative Antigen Test
Microplate Reader

Print article


Clinical Chem.

view channel
Image: The analysis pipeline used to investigate associations between blood metabolites, later life brain imaging measures, and genetic risk for Alzheimer’s disease (Photo courtesy of University College London)

Lipid Measurements Show Potential as Alzheimer’s Disease Biomarkers

Brain changes accompanying ageing are varied and can include pathologies that lead to cognitive impairment, the commonest of which is Alzheimer’s disease (AD). Identifying blood-based signatures of brain... Read more

Molecular Diagnostics

view channel
Image: This image depicts a DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons)

Study Supports Use of Methylated DNA Biomarkers for Cancer Diagnosis and Prognosis

A recent study added weight to the theory that methylated DNA biomarkers could be used for cancer diagnosis and prognosis. Methylation is a biological process by which methyl groups are added to a DNA molecule.... Read more


view channel
Image: Standard test for multiple myeloma provides clues of a rare, more deadly type (Photo courtesy of Pexels)

Standard Blood Cancer Test Provides Clues of Rare IgD Multiple Myeloma

IgD myeloma accounts for about 1% of common blood cancer multiple myeloma and has a worse prognosis. Specific testing for IgD myeloma is available at a handful of reference labs across the US, but takes... Read more


view channel
Image: QIAGEN has acquired a majority stake in enzymes provider BLIRT S.A. (Photo courtesy of QIAGEN)

Qiagen Acquires Enzymes Provider Blirt to Strengthen Sample Technologies Business

QIAGEN N.V. (Venlo, Netherlands) has signed agreements to acquire a 96% majority ownership stake in BLIRT S.A. (Gdansk, Poland), a manufacturer of recombinant enzymes for the life science industry.... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.