We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

BIO-RAD LABORATORIES

  Gold Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
24 Jan 2022 - 27 Jan 2022

Microbiological Features of Mucormycosis Determined in Critically Ill Patients

By LabMedica International staff writers
Posted on 08 Sep 2021
Print article
Image:   Platelia Aspergillus Ag: an enzyme immunoassays for the detection of Aspergillus galactomannan antigen and for the detection of anti-Aspergillus IgG antibodies in serum or plasma (Photo courtesy of Bio-Rad)
Image: Platelia Aspergillus Ag: an enzyme immunoassays for the detection of Aspergillus galactomannan antigen and for the detection of anti-Aspergillus IgG antibodies in serum or plasma (Photo courtesy of Bio-Rad)
Mucormycosis is a rare invasive fungal infection with high mortality in patients with severe underlying predisposing factors causing immunosuppression. The exact incidence of mucormycosis and the optimal therapeutic approach is difficult to determine, especially in severe cases, due to the rarity of the disease.

The causative pathogens are fungi of the order Mucorales, mainly Rhizopus spp., Mucor spp. and Lichtheimia spp., which are typically found on decaying organic material and soils. There are three ways humans can contract mucormycosis, by inhaling spores, by swallowing spores in food or medicines, or when spores contaminate wounds.

Medical Microbiologists at the Technical University of Munich, School of Medicine (Munich, Germany) conducted a retrospective analysis between February 2016 and February 2019. Patients were identified using the HyBase analysis system (epiNet AG, Bochum, Germany) and inclusion criteria were positive laboratory culture for Mucorales with consistent clinical presentation, intensive care treatment, and age >18 years. Proven mucormycosis was based on histopathological findings. Pulmonary mucormycosis was classified as probable as the diagnosis was mainly based on bronchoalveolar lavage (BAL) when patients did not undergo surgery.

All samples were collected using aseptic techniques. Primary microbiological cultures were performed on Columbia agar, Schaedler agar, chocolate agar (prepared culture media, Becton Dickinson, Sparks, MD, USA) and thioglycolate broth (Oxoid Thermo Fisher Scientific, Waltham, MA, USA). Colonies of Mucorales were subcultured on Sabouraud dextrose agar for macroscopic, microscopic and matrix-assisted laser desorption/ionization-time of flight (Bruker Daltronics GmbH, Leipzig, Germany) species identification. Molecular species identification via 28s rDNA polymerase chain reaction and sequencing was performed. Galactomannan detection (Platelia Aspergillus Ag, Bio-Rad Laboratories, Munich, Germany) was performed using BAL and serum samples.

The investigators reported that they had found 15 critically ill patients with Mucorales detected between 2016 and 2019 and the crude mortality rate was 100%. At the time of diagnosis of mucormycosis, 80% of subjects had relevant medical immunosuppression and 53.3% of subjects had neutropenia. Manifestation of mucormycosis was pulmonary in 53.3% of subjects, rhino-orbital in 20% of subjects and disseminated in 26.7% of subjects. Rhizopus microsporus was isolated in nine of 15 (60%) cases, Lichtheimia corymbifera in four of 15 (26.7%) cases and Rhizopus arrhizus in two of 15 (13.3%) cases. Galactomannan antigen testing (serum and BAL) was performed regularly to identify a differential diagnosis or mixed invasive fungal infection (13/15, 86.7%), and yielded positive results for two patients, one of whom also had detectable fungal growth of Aspergillus fumigatus in two consecutive BAL samples.

The authors concluded that for intensive care patients, the prognosis of mucormycosis was extremely poor. An aggressive strategy for diagnosis and treatment is essential for intensive care patients with mucormycosis. It should be noted that during the COVID-19 pandemic in India, the Indian government reported that more than 11,700 people were receiving care for mucormycosis as of 25 May 2021. The study was published on August 1, 2021 in the International Journal of Infectious Diseases.

Related Links:
Technical University of Munich
epiNet AG
Becton Dickinson
Oxoid Thermo Fisher Scientific
Bruker Daltronics
Bio-Rad Laboratories


Gold Supplier
SARS-CoV-2/Flu A/B & RSV Test
RespiBio Panel 3 (RBRP3)
New
Automatic Biochemistry Analyzer
Falcon 260
New
Atomic Fluorescence Spectrometer
LUMINA 3500
New
Microplate Reader
KC-100

Print article
IIR Middle East

Channels

Molecular Diagnostics

view channel
Illustration

Point-of-Care Lateral Flow Test Detects Bladder Cancer Using Urine Sample within Minutes

A breakthrough diagnostics platform uses a multiplexed lateral flow assay that detects 10 bladder cancer biomarkers from a urine sample in either laboratory or point-of-care settings. SCIENION (Berlin,... Read more

Hematology

view channel
Image: Bone marrow aspirate from a patient with Acute Myeloid Leukemia: Blasts are the predominant population and have a high nuclear to cytoplasmic ratio and generally lack granules. (Photo courtesy of Professor Peter G. Maslak, MD)

Cord Blood and Matched Related Donor Transplantation Compared in Acute Myeloid Leukemia

The prognosis of primary refractory and relapsed acute myeloid leukemia is poor, with a five-year overall survival of less than 10%. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only... Read more

Industry

view channel
Illustration

Global Immunofluorescence Assay (IFA) Market to Surpass USD 4 Billion by 2028 Due to Growing Burden of Infectious Diseases

The global immunofluorescence assay (IFA) market is expected to reach USD 4.01 billion by 2028, driven by the increasing global healthcare burden of chronic and infectious diseases, rising application... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.