We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Molecular Changes Associated with Treating Lymphatic Filariasis

By LabMedica International staff writers
Posted on 09 Oct 2019
Print article
Image: A peripheral blood smear showing Wuchereria bancrofti microfilaria, found in a patient with lymphatic filariasis (Photo courtesy of Medical Chemical Corporation).
Image: A peripheral blood smear showing Wuchereria bancrofti microfilaria, found in a patient with lymphatic filariasis (Photo courtesy of Medical Chemical Corporation).
Lymphatic filariasis (LF) is a disabling neglected tropical disease that is caused by the mosquito-borne filarial parasites Wuchereria bancrofti, Brugia malayi and B. timori. Adult worms live in the human host’s lymphatic system and release larval parasites (microfilariae or Mf) that circulate in the blood.

Although treatment is safe, transient mild to moderate systemic adverse events, such as joint pain, fever, rash, or cough, are common in individuals with circulating microfilariae in the blood. Since these adverse events (AEs) are quite uncommon in uninfected individuals, they are believed to be triggered by host responses to dying filarial worms rather than the drugs themselves.

Tropical Medicine specialists at the Washington University School of Medicine (St. Louis, MO, USA) randomly assigned 89 W. bancrofti-infected adults to one of four treatment arms and all participants had AE assessments performed 24 hours after treatment. The AE study enrolled a subset of 95 treated participants and specific analyses that were performed on samples from each of the 95 individuals. Nine of these participants experienced moderate AEs, 24 had mild AEs, and 62 had no AEs. There was no difference in age or sex distribution between the three AE groups.

The scientists used various methodologies to assess the participants’ reactions to the infection. This included a direct sandwich enzyme immunoassay (EIA) that uses the monoclonal antibody AD12 that binds to a carbohydrate epitope on circulating filarial antigen (CFA); immunoprecipitation and western blots where chemiluminescence was detected by a ChemiDoc imager; immune complex and complement components assays; 27 cytokines were measured with the MAGPIX system with the Bio-Rad Bio-Plex Human 27-Plex Cytokine Panel and Bio-Plex Cytokine Reagent Kit. Molecular analyses of RNA and differential gene expression and overall expression patterns were performed.

The investigators found that levels of filarial antigens increased after treatment in individuals with AEs, and this suggests that AEs are triggered by host responses to dying parasites. AEs were associated with elevations in serum levels of certain immune molecules called cytokines. Moreover, when the team compared patterns of gene expression in white blood cells between people with moderate AEs and those without AEs, they found 744 genes upregulated in people with AEs, including many genes involved in immune signaling.

The authors concluded that their study has provided new insights regarding the pathogenesis of post-treatment AEs in LF-infected individuals. The results are consistent with the hypothesis that a Wolbachia lipoprotein triggers AEs by binding to TLR2-TLR6, but other uncharacterized filarial antigens might also play a role. The study was published on September 26, 2019, in the journal PLOS Neglected Tropical Diseases.

Related Links:
Washington University School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.