We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Simple Method Measures Bacterial Tolerance to Antibiotics

By LabMedica International staff writers
Posted on 29 Jun 2017
A growing number of pathogens are developing resistance to one or more antibiotics, threatening the ability to treat infectious diseases. More...
Resistance is typically achieved by mutations that reduce the activity of an antibiotic, for example by decreasing drug binding to the target.

Tolerance, on the other hand, is a poorly characterized phenomenon, and is seldom taken into account explicitly in healthcare. Unlike resistance, which is an increase of the drug concentration in which the bacteria can grow indefinitely, tolerance is an extension of the period of time that bacteria can survive in lethal concentrations of an antibiotic before succumbing to its effects.

Scientists at The Hebrew University (Jerusalem, Israel) developed a tolerance metric called the minimum duration for killing 99% of the population (MDK99). The protocol, which can be performed manually or using an automated robotic system, involves exposing populations of approximately 100 bacteria in separate microwell plates to different concentrations of antibiotics for varied time periods, while determining the presence or lack of survivors.

The team used a Freedom EVOware 75 base unit (Tecan, Männedorf, Switzerland) enclosed in a laminar flow hood equipped with a HEPA filter. A Tecan 8 Plus 1 liquid handling arm and a Tecan RoMa-3 EVO 75 arm were used for pipetting and plate handling. Plates were incubated in a Storex 40 Incubator (Liconic, Woburn, MA, USA) with a shaking option, and culture was kept at 2 °C to 3 °C on a chill/heat plate (Torrey Pines Scientific, Carlsbad, CA, USA).

The scientists applied MDK99 to six Escherichia coli strains, which showed tolerance levels ranging from two to 23 hours under ampicillin treatment. MDK99 also facilitates measurements of a special case of tolerance known as time-dependent persistence, the presence of transiently dormant subpopulations of bacteria that are killed more slowly than the majority of the fast-growing population. Like other forms of tolerance, time-dependent persistence can lead to recurrent infections because the few surviving bacteria can quickly grow to replenish the entire population once antibiotic treatment stops.

Nathalie Q. Balaban, PhD, a professor and senior study author, said, “If implemented in hospital clinical microbiology laboratories, MDK99 could enable the efficient classification of bacterial strains as tolerant, resistant, or persistent, helping to guide treatment decisions. In the end, understanding tolerance and finding a way to combat it could significantly reduce the ever-growing risk of resistance.” The study was published on June 20, 2017, in the Biophysical Journal.

Related Links:
The Hebrew University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Portable Electronic Pipette
Mini 96
Specimen Radiography System
TrueView 200 Pro
New
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.