We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Students Developing Portable Device to Quickly Detect Bacterial Infections

By LabMedica International staff writers
Posted on 08 Nov 2016
The new diagnostic tool, which uses genetically engineered bacteria to detect bacterial infections in blood samples, would lead to more informed decisions that would reduce the number of patients with viral infections being prescribed antibiotics, thus reducing unnecessary treatments and helping to tackle antibiotic resistance.

The device is being developed by the University of Sheffield’s (Sheffield, UK) team of students who participated in this year’s “International Genetically Engineered Machine Competition” – iGEM 2016 (October 27-31; Boston, MA, USA) in the field of synthetic biology. More...
The team consists of students from a range of science, engineering, and medicine disciplines.

They hope the device could be used after GP surgeries to potentially help prevent complications from sepsis, or in walk-in clinics to enable patients with flu-like symptoms to have a small blood sample tested and be promptly told whether they have a bacterial or non-bacterial infection and be treated accordingly.

The tool distinguishes between bacterial and viral infection by detecting levels of the protein lipocalin-2, which is produced in high levels by immune system cells in response to bacterial infections. Bacteria produce siderophores that scavenge iron (as Fe3+) from host blood. In response, the immune system produces lipocalin-2, which sequesters siderophores. Lipocalin-2 levels can increase 5-fold during a bacterial infection. The device detects lipocalin-2 levels using genetically engineered bacteria that report a fluorescent signal inversely correlated to lipocalin-2 levels (via repression of GFP, the fluorescent reporter protein).

Therefore, patient blood with bacterial infection results in a weak GFP signal, in contrast to a strong signal without bacterial infection. The portable device, which includes a shoebox size fluorometer, potentially has the capability of rapidly determining the presence of any bacterial infection.

“Antibiotic resistance is a huge problem and this is why we chose to base our project on it,” said Saylee Jangam, a Sheffield student on the iGEM team, “We may not be able to reverse it, but with our device, we could potentially slow it down. What’s even more interesting is that we are using genetically engineered bacteria to detect the presence of bacterial infections in blood – that’s right – using bacteria to detect bacteria.”

Related Links:
University of Sheffield


Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The test utilizes mtDNA biomarkers to detect molecular signatures associated with endometriosis (Photo courtesy of Shutterstock)

Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis

Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.