We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Mutated Group B Streptococcus Causes Neonatal Sepsis

By LabMedica International staff writers
Posted on 01 Sep 2015
Streptococcus agalactiae or group B Streptococcus is a commensal of the human gut and genitourinary tract, and a leading cause of neonatal infections, in which vertical transmission from mother to child remains the most frequent route of contamination.

The leading cause of early onset group B Streptococcus (GBS) infections in infants is thought to be aspiration of GBS-contaminated amniotic or vaginal fluid, leading to pneumonia or sepsis and in later onset cases, which develop after two to three weeks, may result in meningitis.

Microbiologists at the Institut Pasteur (Paris, France) and their colleagues compared for the first time samples of GBS from pairs of infected newborns and their mothers. More...
They performed whole-genome comparison of 47 GBS samples from 19 mother-child pairs uncovered 21 single nucleotide polymorphisms (SNPs) and seven insertions/deletions. Within the detected SNPs, 16 appear to have been fixed in the sampled population, whereas five mutations were found to be polymorphic. In the infant strains, 14 mutations were detected, including two independently fixed variants affecting the response regulator CovR (covRS) locus, known to encode a major regulatory system of virulence.

A one-nucleotide insertion was also identified in the promoter region of the highly immunogenic surface protein ribbon gene (Rib). Gene expression analysis after incubation in human blood showed that these mutations influenced the expression of virulence-associated genes. Additional identification of three mutated strains in the mothers' milk raised the possibility of the newborns also being a source of contamination to their mothers.

The scientists found that in five out of the 19 sampled newborns, mutations with a potential role in promoting virulence had occurred in GBS. Philippe Glaser, PhD, the group leader said, “In most cases, GBS is just naturally virulent in neonates. The genomic changes in GBS that were found only in a few cases were genetically identical in most of the mother-infant pairs analyzed.” The study was published on August 17, 2015, in the Journal of Bacteriology.

Related Links:

Institut Pasteur 



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Serological Pipet Controller
PIPETBOY GENIUS
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
New
Automated Microscope
dIFine
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.