Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Biosensor-Based Rapid Urine Test Detects Urogenital Schistosomiasis

By LabMedica International staff writers
Posted on 14 Jul 2015
In infrastructure-limited regions, point-of-care (POC) molecular diagnostics hold the potential to transform the management of infectious diseases such as schistosomiasis that carry significant long-term morbidity if left undiagnosed.

Electrochemical biosensors are well suited for molecular diagnostics because of their high sensitivity, low cost, ease of integration into POC devices, and portability of the reader instrumentation and have now been used to detect urogenital schistosomiasis. More...


Scientists at Stanford University School of Medicine (CA, USA) and their colleagues have developed a strategy for a rapid one hour molecular diagnosis of bacterial urinary tract infections using electrochemical biosensors. Urinary cells are lysed and directly applied to an array of sensors functionalized with oligonucleotide probes targeting the 16S ribosomal ribonucleic acid (rRNA) of common uropathogens. Formation of the sequence-specific hybridization complex between the pathogen rRNA and the labeled capture and detector probe pairs is detected by an enzyme tag that mediates an amperometric signal output.

The biosensor is composed of three planar gold electrodes, one each for working, auxiliary, and reference. For the biosensor assay, capture probes are bound to the surface of the working electrode via a thiol linkage. Cells in the sample are lysed and mixed with a buffered solution of detector probe, then applied to the sensor surface. If the target rRNA is present, a hybridization complex of target, capture, and detector probes forms. This complex is detected by binding of horseradish peroxidase (HRP)-conjugated anti-fluorescein binding to a fluorescein tag on the detector probe and addition of tetramethylbenzidine (TMB) substrate. The electron transport mediated by the HRP is measured amperometerically, and the signal is proportional to the quantity of the target.

By inducing bulk fluid motion and local heating, alternating current (AC) electrokinetics improved overall signal-to-noise of the biosensor assay. Further implementation of electrokinetics will facilitate integration into a POC device as it obviates the need for an external incubator for hybridization. For schistosomal detection, the scientists applied square wave AC potential across the working and auxiliary electrodes of the electrochemical sensors using a function generator.

The authors concluded that they have made an important step toward development of a POC device for rapid detection of Schistosoma haematobium eggs in urine. They have implemented strategies that will aid in device integration, such as mechanical lysis and AC electrokinetics. For future development, they will integrate this core assay into a fully automated microfluidics cartridge, further optimize the detection sensitivity, and validate with clinical samples.

Related Links:

Stanford University School of Medicine




New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.