We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Molecular Assay Compared to Blood Smear for Babesiosis Diagnosis

By LabMedica International staff writers
Posted on 10 Jun 2015
A real-time quantitative polymerase chain reaction (qPCR) has been used to determine the number of DNA copies/mL of blood of a Babesia microti gene in infected patients.

Although microscopic examination of a peripheral blood smear is the most commonly used diagnostic method to diagnose active Babesia infection in symptomatic patients, polymerase chain reaction (PCR) assays are also being increasingly employed as well. More...


Scientists at New York Medical College (Valhalla, NY, USA) obtained blood samples from 36 patients whose median age was 62.5 years and 75.0% were male with at least one qPCR-positive blood sample were included in this analysis, including 16 with serial blood samples. Blood samples were evaluated by Wright or Giemsa-stained thick and thin blood smears with at least 300 oil immersion fields were examined on a thin blood smear before reporting a negative test result.

Extracted DNA was eluted from the blood samples using a commercial DNA extraction kit, the QIAamp DNA Blood Mini (Qiagen; Valencia, CA, USA) and qPCR was performed on the 7500 Fast Dx Real-Time PCR instrument (Applied Biosystems; Foster City, CA, USA). Of the 36 patients, 32 had one or more positive blood smears for ring forms consistent with B. microti, though not all of the blood samples with positive smears were simultaneously tested by qPCR.

Based on testing of serial blood samples, it was demonstrated that the smear became negative while the qPCR remained positive. A moderate to strong correlation was found between the DNA copy number and the number of infected erythrocytes per milliliter of blood. Based on limited data, the DNA copy number fell by a mean of 4.1% to 12.9% per day on active treatment and by 3.5% to 7.1% per day off therapy.

The authors concluded that the qPCR method is more sensitive than microscopic examination of the blood smear for detection of B. microti infection. This assay should enable an assessment of the rate of parasite clearance over time even in patients who have become smear negative. Quantitative test results for parasite clearance may be useful in evaluating the relative efficacy of various antiparasitic drug regimens and other therapeutic modalities. The study was published in the June 2015 issue of the journal Diagnostic Microbiology and Infectious Disease.

Related Links:

New York Medical College
Qiagen 
Applied Biosystems 



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC
New
Ultrasonic Cleaner
UC 300 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.