We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Next-Generation DNA Sequencing Refines Pneumonia Diagnosis

By LabMedica International staff writers
Posted on 07 Oct 2014
Applying advanced next-generation sequencing (NGS) of DNA from samples taken from intubated patients with suspected pneumonia has the potential for providing physicians with rapid, precise, culture-independent identification of bacterial, fungal, and viral pathogens and their antimicrobial sensitivity profiles.

Accurate and rapid identification of the microbial pathogens in patients with pulmonary infections could lead to targeted antimicrobial therapy with potentially less adverse effects and lower costs. More...
Toward this end, investigators at George Washington University (Washington DC, USA) combined an NGS approach with data interpretation based on the "PathoScope" bioinformatics software package to analyze bronchial aspirates from 61 intubated patients with suspected pneumonia.

Pathoscope capitalizes on a Bayesian statistical framework that accommodates information on sequence and mapping quality and provides probabilities of matches to a known database of reference genomes. This approach incorporates the possibility that multiple species can be present in the sample or that the target strain is not even contained within the reference database. It also accurately discriminates between very closely related strains of the same species with much less than one time coverage of the genome and without the need for sequence assembly or complex preprocessing of the database or taxonomy. No other method so far described in the literature has been shown to identify species or substrains in such a direct and automatic manner and without the need for large numbers of reads.

The present study used NGS of essentially full-length PCR-amplified 16S ribosomal DNA from the bronchial aspirates. The results from the 61 patients demonstrated that sufficient DNA could be obtained from 72% of samples, 44% of which (27 samples) yielded PCR amplimers suitable for NGS. Out of 27 sequenced samples, only 20 had bacterial culture growth, while microbiological and NGS identification of bacteria coincided in 17 (85%) of these samples. Despite the lack of bacterial growth in seven samples that yielded amplimers and were sequenced, the NGS identified a number of bacterial species in these samples.

Overall, a significant diversity of bacterial species was identified from the same genus as the predominant cultured pathogens. The number of NGS-identifiable bacterial genera was consistently higher than identified by standard microbiological methods.

“Currently, patients who develop pneumonia after entering the ICU are subjected to broad-spectrum antibiotics, which adds costs, potentially increases the risk of development of antimicrobial resistance, and creates a greater likelihood of an adverse effect attributable to the antibiotics,” said senior author Dr. Gary Simon, professor of medicine at George Washington University. “In our paper, we show these methods could improve if we establish a more precise microbiologic cause.”

The study was published in the August 20, 2014, online edition of the Journal of Clinical Microbiology.

Related Links:

George Washington University



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
New
Chagas Disease Test
LIAISON Chagas
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.