We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics

Download Mobile App

Technology Evaluated for T-cell Receptor Identification and Cloning

By LabMedica International staff writers
Posted on 21 Nov 2018
Print article
Image: A scanning electron micrograph (SEM) of a human T-cell (Photo courtesy of the U.S. National Institutes of Health).
Image: A scanning electron micrograph (SEM) of a human T-cell (Photo courtesy of the U.S. National Institutes of Health).
A team of cancer researchers developed a tracking and screening system that accurately identifies T-cell receptors from individual tumors within just a few days.

Adoptive T-cell transfer, in particular T-cell receptor (TCR) therapy, holds great promise for cancer immunotherapy with encouraging clinical results. However, isolating the correct TCR T-cell clone is a tedious, time-consuming, and costly process. Thus, there is a critical need for single cell technologies to conduct fast and multiplexed functional analyses followed by recovery of the clone of interest.

Such a single cell technology was described by investigators from the University of California, Irvine (USA) in the November 6, 2018, online edition of the journal Lab on a Chip.

The investigators used droplet microfluidics for functional screening and real-time monitoring of single TCR T-cell activation upon recognition of target tumor cells. Notably, this platform included a tracking system for each clone as well as a sorting procedure with 100% specificity validated by downstream single cell reverse-transcription PCR and sequencing of TCR chains. The TCRs could be sorted and identified within days, considerably faster than the months or year that previous technologies required. The technology also significantly reduced the cost of making individualized TCRs.

"This technology is particularly exciting because it dismantles major challenges in cancer treatments," said senior author Dr. Weian Zhao, associate professor of pharmaceutical sciences at the University of California, Irvine. "This use of droplet microfluidics screening significantly reduces the cost of making new cancer immunotherapies that are associated with less systemic side effects than standard chemotherapy drugs, and vastly speeds up the timeframe for treatment."

Related Links:
University of California Irvine

Print article


Molecular Diagnostics

view channel
Abnormal accumulation of tau protein in neuronal cell bodies (arrow) and neuronal extensions (arrowhead) in the neocortex of a patient who had died with Alzheimer\'s disease (Photo courtesy of Wikimedia Commons)

Phosphorylated-Tau Blood Test Identifies Asymptomatic Alzheimer’s Disease

A blood test that determines circulating levels of the Alzheimer's disease (AD) biomarker protein phospho-tau217 (p-tau217) was found to distinguish AD from other neurodegenerative diseases, with significantly... Read more

Industry News

view channel
Image: ChemWell RPR Analyzer (Photo courtesy of Awareness Technology, Inc.)

Awareness Technology Announces ChemWell RPR Analyzer - The Most Significant Innovation in Syphilis Testing in Last 30 Years

Awareness Technology, Inc. (Palm City, FL, USA) has announced the most significant innovation in syphilis testing in the last 30 years with the launch of the ChemWell RPR automated nontreponemal analyzer... Read more
Copyright © 2000-2020 Globetech Media. All rights reserved.