We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Maternal Multiomic Changes Could Predict Onset of Labor

By LabMedica International staff writers
Posted on 18 May 2021
Currently, predictions of when labor will start are imprecise and based on gestational age and an average pregnancy length of 40 weeks, even though the onset of labor between week 37 and 42 of pregnancy is considered normal. More...
Having a better idea of when labor may arrive could help with planning and managing medical concerns like fetal lung maturation.

As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is crucial to understanding these physiological transitions and identifying predictive biomarkers of delivery.

A large team of multidisciplinary scientists led by Stanford University School of Medicine (Palo Alto, CA, USA) followed more than 60 women toward the end of their pregnancies, collecting blood samples for metabolic, protein, and immune analysis. They collected a median of three blood samples from each participant within the 100 days preceding labor. Using untargeted mass spectrometry and an aptamer-based proteomic platform, the team tallied the levels of 3,529 metabolites and 1,317 proteins, while using a mass cytometry assay to gauge nearly 2,300 immune features over time.

The investigators pieces together a picture of the changes that occur in the two to four weeks prior to delivery. For instance, the levels of steroid hormones like progesterone and cortisol rose dramatically. At the same time, levels of factors involved in angiogenesis fell; a change they said could help weaken the connection between the uterus and the placenta, priming them for delivery.

Additional shifts affected the immune system. There was a rise in interleukin-1 receptor type 4 (IL-1R4) levels, which inhibits the inflammatory factor IL-33, suggesting that this change may tamp down inflammatory responses that might otherwise be triggered during labor. In addition, the increase in IL-1R4 levels could serve a labor-initiation signal. By feeding these changes into a model, the scientists developed a tool to predict when someone is about to go into labor. After training on their 53 cohort members, they tested their predictor on data from a further 10 women to find that it had high accuracy in predicting the time to labor. They further noted that the model could predict both preterm and term labor.

Virginia Winn, MD, an associate professor of obstetrics and gynecology and co-author of the study, said, “If we understand what's regulating labor, we might be able to do a better job of inducing labor.” The study was published on May 5, 2021 in the journal Science Translational Medicine.


Related Links:
Stanford University School of Medicine


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Noul’s AI-based cervical cancer diagnostic solution, miLab CER (Photo courtesy of Noul)

AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America

Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.