We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Computer-Aided Cell Analysis Enables Faster Diagnosis of Blood Diseases

By LabMedica International staff writers
Posted on 11 Aug 2023
Print article
Image: An AI algorithm can help physicians diagnose blood disorders (Photo courtesy of Freepik)
Image: An AI algorithm can help physicians diagnose blood disorders (Photo courtesy of Freepik)

Blood disorders are frequently characterized by alterations in the quantities and shapes of red and white blood cells. Traditional methods for diagnosing the disease involves examining blood smears on a slide under a microscope, although evaluating these changes can be challenging even for experienced professionals, as subtle alterations can affect only a small fraction of the tens of thousands of visible cells. Consequently, distinguishing between diseases is not always simple. For instance, the visible changes in the blood of individuals with myelodysplastic syndrome (MDS), an early form of leukemia, often resemble those seen in less harmful types of anemia. The definitive diagnosis of MDS requires more invasive procedures such as bone marrow biopsies and molecular genetic testing.

Scientists from the German Cancer Research Center (DKFZ, Heidelberg, Germany) and the Cambridge Stem Cell Institute (Cambridge, UK) have now developed an artificial intelligence (AI) system capable of identifying and characterizing white and red blood cells in microscopic images of blood samples. This algorithm, named Haemorasis, aids physicians in diagnosing blood disorders and is publicly accessible as an open-source tool for research purposes. Initially, the scientists trained Haemorasis to recognize cell morphology using over half a million white blood cells and millions of red blood cells from more than 300 individuals with various blood disorders (including different forms of anemia and MDS).

Leveraging this acquired knowledge, Haemorasis can now propose diagnoses for blood disorders and even differentiate genetic subtypes of these conditions. Additionally, the algorithm uncovers significant associations between specific cell shapes and diseases, a task complicated by the sheer volume of cells involved. Haemorasis underwent testing on three distinct patient groups to confirm its efficacy across diverse test centers and blood count scanner systems. Tailored for hematology diagnostics, Haemorasis aids in providing a more accurate initial diagnosis of blood disorders, which is an essential step in identifying patients who may require more invasive procedures like bone marrow tests or genetic analysis. Ongoing studies will explore the potential limitations of the method.

"Automated cell analysis with Haemorasis could complement routine diagnosis of blood disorders in the future. So far, the algorithm has only been trained on specific diseases - but we still see great potential in this approach," said Moritz Gerstung of DKFZ.

Related Links:
German Cancer Research Center
Cambridge Stem Cell Institute

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Reagent Documents Platform
My.ral-diagnostics.fr
New
Platform Shaker
CRP-3X CAPPRondo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The researchers used state-of the-art equipment for isotope ratio mass spectrometry (Photo courtesy of The University of Melbourne)

New Blood Test to Detect Alzheimer’s Disease Before Clinical Symptoms Develop

Alzheimer’s disease (AD) is the most common form of dementia, accounting for 60-70% of cases worldwide, totaling over 33 million, according to the World Health Organization. As the global population ages,... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.