We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Immune Microenvironment Characterized in Multiple Myeloma Progression

By LabMedica International staff writers
Posted on 30 Nov 2022
Print article
Image: The 10X Genomics Chromium Single Cell Gene Expression Solution (Photo courtesy of Technion Israel Institute of Technology)
Image: The 10X Genomics Chromium Single Cell Gene Expression Solution (Photo courtesy of Technion Israel Institute of Technology)

Multiple myeloma (MM) is a malignant disease of plasma cells (PCs) that reside within the bone marrow (BM). Early alterations within the bone marrow microenvironment that contribute to the progression of MM from its precursor stages could be the key to identifying novel therapeutic approaches.

The disease transitions from the precursor stages, monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM), to clinically aggressive disease. Although the outcomes have improved, the disease remains largely incurable once progression has occurred.

Clinical Scientists at the University of Arkansas for Medical Sciences (Little Rock, AR, USA) and their international colleagues collected primary BM and peripheral blood (PB) samples were from nine patients with MGUS, seven with SMM, and 10 with newly diagnosed MM (NDMM). CD138-depleted BM samples were viably frozen in dimethyl sulfoxide at a final concentration of 10% and processed for single-cell RNA sequencing (scRNA-seq) and T-cell receptor (TCR) sequencing.

The team used single-cell RNA sequencing of bone marrow cells with the 10× Genomics Single Cell 5′ version kit (Pleasanton, CA, USA) that was performed on the PC-depleted mononuclear fraction of BM aspirates from patients. Single-cell capture (target, 3,000 cells), reverse transcription, library preparation (expression and TCR), and paired-end sequencing were performed. All BM samples were further investigated by eight color flow cytometry using CD138, CD38, CD45, CD19, CD56, CD20, CD27, and CD81 to distinguish B-, T-, NK-, and immature B-cell subsets as well as monocytes. Preprocessing of the 10× scRNA-seq and TCR data was performed with CellRanger.

The scientists identified changes in immune cell populations as the disease progressed, which were characterized by a substantial decrease in memory and naïve CD4 T cells, and an increase in CD8+ effector T cells and T-regulatory cells. These alterations were further accompanied by an enrichment of nonclonal memory B cells and an increase in CD14 and CD16 monocytes in MM compared with its precursor stages. T cells were by far the largest subpopulation with 27,621 of the total 62,044 cells (44.5%) and were clustered into 10 distinct T-cell subpopulations. T cells were divided into two main clusters, consisting of CD4 and CD8 T cells. B cells were divided into naïve B cells and Memory B cells.

The investigators reported that memory B cells showed a striking expansion from MGUS to NDMM in both data sets and the meta-analysis. Alterations were further accompanied by an enrichment of nonclonal memory B cells and an increase in CD14 and CD16 monocytes in MM compared with its precursor stages.

The authors concluded that their results provide crucial information on the immune changes associated with the progression to clinical MM and can help to develop immune-based strategies for patient stratification and early therapeutic intervention. The study was published on November 22, 2022 in the journal Blood Advances.

Related Links:
University of Arkansas for Medical Sciences 
10× Genomics

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test
New
HbA1c Test
HbA1c Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.