We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Tumor Biopsies Analysis Performed on Newly-diagnosed B-cell Neoplasms

By LabMedica International staff writers
Posted on 22 Nov 2022
Print article
Image: TruSight Lymphoma 40 uses expert-defined content and proven next-generation sequencing (NGS) technology to identify somatic variants associated with lymphomas (Photo courtesy of Illumina)
Image: TruSight Lymphoma 40 uses expert-defined content and proven next-generation sequencing (NGS) technology to identify somatic variants associated with lymphomas (Photo courtesy of Illumina)

Comprehensive genomic analyses of tumor biopsies from patients with newly-diagnosed germinal center B cell (GCB) diffuse large B cell/high grade B cell lymphoma (DLBCL/HGBL) have identified molecular subtypes predictive of inferior survival, which are characterized by somatic mutations that can be detected through clinical laboratory mutation analysis (CLMA).

Comprehensive genomic analyses have revealed that tumors from approximately 50% of newly-diagnosed GCB DLBCL/HGBL patients can be assigned to a poor-risk subgroup (Cluster 3, EZB) which is associated with inferior survival following receipt of first line chemotherapy (R-CHOP). Additionally, 10%–25% of tumors from newly-diagnosed GCB DLBCL/HGBL patients demonstrate poor-risk gene expression profiles which assign them to a subgroup which is also associated with inferior survival following receipt of first line R-CHOP.

Clinical Scientists at the University of Pennsylvania (Philadelphia, PA, USA) performed CLMA on 59 tumor biopsies (48 formalin-fixed paraffin-embedded tissue, 11 bone marrow aspirate or biopsy, two body fluid) obtained from 2015 to 2021, with 58 successful assays (98% success rate) and a median result turnaround time (TAT) of 16 days. Five biopsies were excluded due to documented request by treating clinician or diagnosing pathologist for purposes of medical decision making and two additional biopsies were excluded due to lack of clinical follow-up, resulting in analysis of 51 biopsies from 51 patients, for which Lymphoma Sequencing Panel (LSP, Lymphoma 40 Kit, Illumina, San Diego, CA, USA) was performed on 32 and PennSeq Lymphoma Panel (PSLP) on 19.

For all 51 biopsies analyzed, there were a total of 87 mutations characterized as 56 missense, 17 frameshift, 11 nonsense and three splice site, and 35 biopsies harbored a mutation of a gene of interest with 32 biopsies a mutation of a gene of interest with gain or loss of function predicted. In total, there were 74 occurrences of mutations of genes of interest (counting duplicate mutations in the same gene in the same biopsy only once), with 60 predicted to result in gain or loss of gene function. For CREBBP, 21 mutations were characterized as 10 missense, six frameshift, four nonsense and one splice site with loss of function predicted to result in 15/16 biopsies.

For TP53, 18 mutations were characterized as 16 missense, one frameshift and one nonsense with loss of function predicted to result in 15/16 biopsies. For EZH2, 12 mutations were characterized as 11 missense and one frameshift with gain of function predicted to result in 11/12 biopsies. For TNFRSF14, 11 mutations were characterized as two missense, five frameshift, three nonsense, one splice site with loss of function predicted to result in 8/11 biopsies. For other genes of interest (GNA13, BCL2, DDX3X, MYC and PTEN), 24 mutations were characterized as 17 missense, four frameshift, two nonsense and one splice site with gain or loss of function predicted in 11/19 biopsies.

The authors concluded that CLMA performed on tumor biopsies from patients with newly-diagnosed GCB DLBCL/HGBL revealed frequent mutations in CREBBP which were predicted to result in loss of function as well as a significantly lower rate of estimated disease free survival at two years. The study was published on November 17, 2022 in the journal Oncotarget.

Related Links:
University of Pennsylvania
Illumina 

New
Gold Supplier
Blood Glucose Reference Analyzer
Nova Primary
New
Lyophilizer
FD150
New
Cancer Biomarker Test
Xpert Bladder Cancer Detection
New
COVID-19 Test Cassette
NG TEST COVID Immuni-T

Print article
SUGENTECH INC.

Channels

Clinical Chem.

view channel
Image: Equivalence of Genetically Elevated LDL and Lipoprotein(a) on Myocardial Infarction (Photo courtesy of Viborg Regional Hospital)

Familial Hypercholesterolemia Patients With ACD Have Elevated Lipoprotein(a)

Familial hypercholesterolemia (FH) is a genetic disorder characterized by high cholesterol levels, specifically very high levels of low-density lipoprotein (LDL cholesterol), in the blood and early cardiovascular... Read more

Microbiology

view channel
Image: Ring-form trophozoites of Plasmodium vivax in a thin blood smear (Photo courtesy of Centers for Disease Control and Prevention)

Immune Regulators Predict Severity of Plasmodium vivax Malaria

Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules... Read more

Pathology

view channel
Image: Breast cancer spread uncovered by new molecular microscopy (Photo courtesy of Wellcome Sanger Institute)

New Molecular Microscopy Tool Uncovers Breast Cancer Spread

Breast cancer commonly starts when cells start to grow uncontrollably, often due to mutations in the cells. Overtime the tumor becomes a patchwork of cells, called cancer clones, each with different mutations.... Read more

Industry

view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.