We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

HEMOCUE AB

HemoCue AB develops, produces, and markets medical diagnostic products for point of care testing (POC) markets. Its p... read more Featured Products: More products

Download Mobile App




Hematological Neoplasm Cytogenetics Profiled With Optical Genome Mapping

By LabMedica International staff writers
Posted on 25 Oct 2022
Print article
Image: The Bionano Genomics Saphyr platform offers sample preparation, DNA imaging and genomic data analysis technologies combined into one streamlined workflow that enables one to identify structural variants and create de novo genome assemblies (Photo courtesy of Bionano Genomics)
Image: The Bionano Genomics Saphyr platform offers sample preparation, DNA imaging and genomic data analysis technologies combined into one streamlined workflow that enables one to identify structural variants and create de novo genome assemblies (Photo courtesy of Bionano Genomics)

The current standard-of-care cytogenetic techniques for the analysis of hematological malignancies include karyotyping, fluorescence in situ hybridization, and chromosomal microarray analysis (CMA), which are labor intensive and time and cost prohibitive, and they often do not reveal the genetic complexity of the tumor, demonstrating the need for alternative technology for better characterization of these tumors.

Optical genome mapping (OGM) has emerged as a next-generation cytogenomic technology that can detect all classes of SVs at a higher resolution than the standard-of-care (SOC) techniques. Recently, the technology has gained enormous traction and has been evaluated in several settings, including prenatal settings, postnatal settings, hematological neoplasms, and solid tumors, demonstrating 100% clinical concordance with traditional cytogenetic analysis.

Medical Scientists at the Medical College of Georgia (Augusta, GA, USA) performed a retrospective validation study included 92 analyses (including replicates), representing 69 unique and well-characterized samples that were received in their clinical laboratory for cytogenetic analysis with karyotyping and/or FISH testing. These were composed of 59 hematological neoplasms that included 18 adult acute myeloid leukemia (AML), 15 chronic lymphocytic leukemia (CLL), 12 myelodysplastic syndrome (MDS), six plasma cell myeloma, three lymphoma, three myeloproliferative disorders/myeloproliferative neoplasms, and two chronic myeloid leukemia. In addition, 10 morphologically normal and cytogenetically negative samples were also analyzed to evaluate true-negative/false-positive rates and calculate performance metrics.

Ultra-high-molecular-weight DNA was isolated, labeled, and processed for analysis on the Bionano Genomics Saphyr platform (Bionano Genomics Inc., San Diego, CA, USA). A frozen bone marrow aspirate aliquot (650 μL) was thawed, and cells were counted using HemoCue (HemoCue Holding AB, Ängelholm, Sweden). The DNA backbone was stained blue using DNA stain and quantified using Qubit high-sensitivity double-stranded DNA assay kits. Labeled DNA was loaded onto flow cells of Saphyr chips for optical imaging. The fluorescently labeled DNA molecules were imaged on the Saphyr instrument after the labeled DNA molecules were electrophoretically linearized in the nanochannel arrays.

The team reported that all 69 samples passed the quality control metrics, and the 59 hematological neoplasm samples achieved an average N50 (>150 kb) of 303 kb (±35), map rate of 87.5% (±7.5%), label density of 15.8/100 kb (±1.0), and average coverage of 391× (±89). In total, 86,306 SVs were identified in the 59 samples, with an average of approximately 1,462 SVs per sample. OGM was concordant in identifying 162 of 164 variants, which were reported with current SOC methods. OGM detected 59 of 60 aneuploidies, whereas one mosaic loss of chromosome Y (in a complex case of CLL) was not detected with OGM.

Of the 45 cases classified as simple, 35 had at least one clinically reported genetic aberration, whereas 10 were negative with both karyotyping and/or FISH testing. In the 35 cases with reported aberrations, OGM detected all of the previously reported variants and corrected the previously incorrect interpretations due to low resolution of karyotyping in two cases. The translocation, interstitial deletion, and duplication were detected consistently from 25% to 5% allele fraction.

The authors concluded that their study showed a 98.7% sensitivity and a 100% specificity for detecting SVs previously reported with a combination of SOC methods. The increased clinical utility of OGM in hematological malignancies has been established by multiple reports where 100% concordance was reported with multiple SOC methods. The study was published on October 17, 2022 in the Journal of Molecular Diagnostics.

Related Links:
Medical College of Georgia
Bionano Genomics
HemoCue Holding AB

Platinum Supplier
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
New
Gold Supplier
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
New
Silver Supplier
Microscope
iScope Series
New
Silver Supplier
3-Part Auto Hematology Analyzer
DH20

Print article
GLOBETECH PUBLISHING LLC

Channels

Clinical Chemistry

view channel
Image: The new assays are designed to run on the B•R•A•H•M•S KRYPTOR compact PLUS clinical chemistry analyzer (Photo courtesy of Thermo Fisher)

Breakthrough Immunoassays to Aid in Risk Assessment of Preeclampsia

Preeclampsia is a life-threatening blood pressure condition that can arise during pregnancy and the postpartum phase. This severe pregnancy complication is a primary cause of maternal and fetal mortality... Read more

Molecular Diagnostics

view channel
Image: The ClarityDX Prostate test can reduce unnecessary prostate biopsies by up to 35% (Photo courtesy of Nanostics)

Innovative Blood Test to Revolutionize Prostate Cancer Detection and Reduce Invasive Biopsies

One in six men will receive a prostate cancer diagnosis during their lives. Thankfully, if caught early, prostate cancer is highly treatable. However, the existing screening process has its limitations.... Read more

Immunology

view channel
Image: A new test could detect the body’s adaptive immune response to viruses (Photo courtesy of 123RF)

Predictive T-Cell Test Detects Immune Response to Viruses Even Before Antibodies Form

The adaptive immune system is an incredible defense mechanism that allows the human body to identify and mount targeted responses against specific pathogens. T-Cells, a special kind of white blood cell,... Read more

Microbiology

view channel
Image: On-chip pretreatment and rapid AST based directly on positive blood cultures (Photo courtesy of Liu Yang)

Integrated Solution for Rapid AST Directly From Positive Blood Cultures to Combat Bloodstream Infection

The presence of living bacteria in the bloodstream, known as bacteremia, can lead to serious conditions like bloodstream infections (BSIs) and sepsis, which can often be fatal. Quickly prescribing the... Read more

Pathology

view channel
Image: A new microscopy method detects treatment-resistant cancer cells early (Photo courtesy of 123RF)

New Rapid-Live Screening Microscopy Technique Enables Early Detection of Treatment-Resistant Cancer Cells

Chemotherapy serves as an effective tool in the fight against cancer, yet some cancer cells can evade treatment by going into a dormant state known as senescence. These so-called therapy-induced senescent... Read more

Technology

view channel
Image: A new electrochemical device can quickly and inexpensively identify people at greatest risk for osteoporosis (Photo courtesy of ACS Central Science, 2023)

Electrochemical Device Identifies People at Higher Risk for Osteoporosis Using Single Blood Drop

With the global increase in life expectancy, the incidence of age-related conditions like osteoporosis is increasing. Osteoporosis, affecting around 200 million individuals worldwide, has a higher incidence... Read more

Industry

view channel
Image: AACC Middle East is a two-day conference that brings the latest in laboratory medicine to the Middle East region (Photo courtesy of ADLM)

AACC Middle East 2023 to Explore Latest Trends in Clinical Pathology and Laboratory Medicine

The AACC Middle East Conference and Exposition will be held by the Association for Diagnostics & Laboratory Medicine (ADLM - formerly AACC, Washington, DC, USA) in partnership with Life Dx (Abu Dhabi,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.