We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
MedicalSystem

HEMOCUE AB

HemoCue AB develops, produces, and markets medical diagnostic products for point of care testing (POC) markets. Its p... read more Featured Products: More products

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Hematological Neoplasm Cytogenetics Profiled With Optical Genome Mapping

By LabMedica International staff writers
Posted on 25 Oct 2022
Print article
Image: The Bionano Genomics Saphyr platform offers sample preparation, DNA imaging and genomic data analysis technologies combined into one streamlined workflow that enables one to identify structural variants and create de novo genome assemblies (Photo courtesy of Bionano Genomics)
Image: The Bionano Genomics Saphyr platform offers sample preparation, DNA imaging and genomic data analysis technologies combined into one streamlined workflow that enables one to identify structural variants and create de novo genome assemblies (Photo courtesy of Bionano Genomics)

The current standard-of-care cytogenetic techniques for the analysis of hematological malignancies include karyotyping, fluorescence in situ hybridization, and chromosomal microarray analysis (CMA), which are labor intensive and time and cost prohibitive, and they often do not reveal the genetic complexity of the tumor, demonstrating the need for alternative technology for better characterization of these tumors.

Optical genome mapping (OGM) has emerged as a next-generation cytogenomic technology that can detect all classes of SVs at a higher resolution than the standard-of-care (SOC) techniques. Recently, the technology has gained enormous traction and has been evaluated in several settings, including prenatal settings, postnatal settings, hematological neoplasms, and solid tumors, demonstrating 100% clinical concordance with traditional cytogenetic analysis.

Medical Scientists at the Medical College of Georgia (Augusta, GA, USA) performed a retrospective validation study included 92 analyses (including replicates), representing 69 unique and well-characterized samples that were received in their clinical laboratory for cytogenetic analysis with karyotyping and/or FISH testing. These were composed of 59 hematological neoplasms that included 18 adult acute myeloid leukemia (AML), 15 chronic lymphocytic leukemia (CLL), 12 myelodysplastic syndrome (MDS), six plasma cell myeloma, three lymphoma, three myeloproliferative disorders/myeloproliferative neoplasms, and two chronic myeloid leukemia. In addition, 10 morphologically normal and cytogenetically negative samples were also analyzed to evaluate true-negative/false-positive rates and calculate performance metrics.

Ultra-high-molecular-weight DNA was isolated, labeled, and processed for analysis on the Bionano Genomics Saphyr platform (Bionano Genomics Inc., San Diego, CA, USA). A frozen bone marrow aspirate aliquot (650 μL) was thawed, and cells were counted using HemoCue (HemoCue Holding AB, Ängelholm, Sweden). The DNA backbone was stained blue using DNA stain and quantified using Qubit high-sensitivity double-stranded DNA assay kits. Labeled DNA was loaded onto flow cells of Saphyr chips for optical imaging. The fluorescently labeled DNA molecules were imaged on the Saphyr instrument after the labeled DNA molecules were electrophoretically linearized in the nanochannel arrays.

The team reported that all 69 samples passed the quality control metrics, and the 59 hematological neoplasm samples achieved an average N50 (>150 kb) of 303 kb (±35), map rate of 87.5% (±7.5%), label density of 15.8/100 kb (±1.0), and average coverage of 391× (±89). In total, 86,306 SVs were identified in the 59 samples, with an average of approximately 1,462 SVs per sample. OGM was concordant in identifying 162 of 164 variants, which were reported with current SOC methods. OGM detected 59 of 60 aneuploidies, whereas one mosaic loss of chromosome Y (in a complex case of CLL) was not detected with OGM.

Of the 45 cases classified as simple, 35 had at least one clinically reported genetic aberration, whereas 10 were negative with both karyotyping and/or FISH testing. In the 35 cases with reported aberrations, OGM detected all of the previously reported variants and corrected the previously incorrect interpretations due to low resolution of karyotyping in two cases. The translocation, interstitial deletion, and duplication were detected consistently from 25% to 5% allele fraction.

The authors concluded that their study showed a 98.7% sensitivity and a 100% specificity for detecting SVs previously reported with a combination of SOC methods. The increased clinical utility of OGM in hematological malignancies has been established by multiple reports where 100% concordance was reported with multiple SOC methods. The study was published on October 17, 2022 in the Journal of Molecular Diagnostics.

Related Links:
Medical College of Georgia
Bionano Genomics
HemoCue Holding AB

Gold Supplier
Automated, Random Access Chemistry Analyzer
LIDA 300
New
Dengue Real-Time RT-PCR Test
Simplexa Dengue Kit
New
Hemolysing Reagent
Dialyse-BA 5D
New
Automated Nucleic Acid Extraction Instrument
DA3500

Print article
SUGENTECH INC.

Channels

Clinical Chem.

view channel
Image: ELISA kit for liver-type fatty acid–binding protein (L-FABP). The level of L-FABP present in urine reflects the level of renal tubular dysfunction (Photo courtesy of Sekisui Medical Co)

Urinary Biomarkers Predict Weaning From Acute Dialysis Therapy

Acute kidney injury is associated with a higher risk of chronic kidney disease (CKD), end-stage renal disease, and long-term adverse cardiovascular effects. Critically ill patients with acute kidney injury... Read more

Microbiology

view channel
Image: Ring-form trophozoites of Plasmodium vivax in a thin blood smear (Photo courtesy of Centers for Disease Control and Prevention)

Immune Regulators Predict Severity of Plasmodium vivax Malaria

Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules... Read more

Pathology

view channel
Image: Breast cancer spread uncovered by new molecular microscopy (Photo courtesy of Wellcome Sanger Institute)

New Molecular Microscopy Tool Uncovers Breast Cancer Spread

Breast cancer commonly starts when cells start to grow uncontrollably, often due to mutations in the cells. Overtime the tumor becomes a patchwork of cells, called cancer clones, each with different mutations.... Read more

Industry

view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.