We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Washing Techniques Compared for Preparation of Autologous Blood Transfusion

By LabMedica International staff writers
Posted on 11 Oct 2022
Print article
Image: The HemoClear microfiltration device for the preparation of autologous blood transfusion (Photo courtesy of Pennine Healthcare)
Image: The HemoClear microfiltration device for the preparation of autologous blood transfusion (Photo courtesy of Pennine Healthcare)

Cell salvage is the process by which blood lost in surgery is collected and washed or filtered to produce autologous blood for re-transfusion to the patient. Cell salvage aims to reduce the need for donor blood.

Centrifugal cell salvage washing technique is a preferred medical treatment in order to retain lost red blood cells (RBCs) without contaminants. Although this technology very efficiently collects and washes shed blood, it is costly and often impractical or unavailable, especially in middle- or low-income countries.

A team of clinical scientists working with the Sanquin Blood Bank (Amsterdam, the Netherlands) collected a total of nine whole blood units, 500 mL ± 10% in quadruple, and used bottom-and-top collection systems containing 70 mL of citrate-phosphate-dextrose (CPD, Fresenius Kabi, Emmer Compascuum, the Netherlands) at the Sanquin Blood Center to allow their temperatures to adjust to 20 to 24 ℃. The processing of the whole blood with the devices was initiated at around 16 hours after collection.

The laboratory study was designed to compare the centrifugation (autoLog, Medtronic, Eindhoven, the Netherlands), microfiltration (HemoClear BV, Zwolle, The Netherlands) and coarse filtration (Hemafuse, Sisu Global Health, Baltimore, MD, USA) techniques in their ability to remove non-cellular components and recover and concentrate the blood cells. Hematological parameters (cell count, hemoglobin concentration, hematocrit and mean corpuscular volume (MCV)) were obtained using an Advia 2120 hematology analyzer (Siemens Healthcare Nederland BV, Den Haag, the Netherlands).

The hematology team reported that the centrifugal technology confirmed its efficacy to remove potentially harmful solutes and capture red blood cells. The microfiltration technology (HemoClear) reached comparable levels of removal of solutes, with a potential advantage over centrifugal technology in the ability to also recover platelets. The coarse filtration technology (Hemafuse) had no washing capacity but, like the microfiltration technology, has the advantage of recovering platelets. Both filtration-based technologies recovered a significantly greater amount of platelets, with the coarse filtration having the highest recovery of platelets, 92% versus 67% with microfiltration. The mean-free hemoglobin concentration before processing was 11 ± 10 mg/L. The centrifugation procedure significantly increased mean-free hemoglobin concentration to 207 ± 22 mg/L.

The authors concluded that innovative filtration devices represent an alternative to centrifugal technology in the preparation of autologous blood for reinfusion. The HemoClear technology for the first time enables the recovery of washed platelets and red blood cells. Washing of blood cells with saline is necessary to remove non-cellular components and enable safe reinfusion. Both the centrifugation (autoLog) and microfiltration (HemoClear) technologies have a washing feature and effectively reduce the various non-cellular solutes. The study was published on September 30, 2022 in the Journal of Blood Medicine.

Related Links:
Sanquin Blood Bank
Fresenius Kabi
Medtronic
Sisu Global Health 
Siemens Healthcare Nederland BV 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.