We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




AI Holography System Accurately Checks Quality of Red Blood Cells

By LabMedica International staff writers
Posted on 15 Aug 2022
Print article
Image: AI holography system checks blood quality without injections (Photo courtesy of Pexels)
Image: AI holography system checks blood quality without injections (Photo courtesy of Pexels)

Red blood cells are a major component of blood that carries oxygen. Red blood cells collected through blood donation are stored for a certain period of time until they are used for transfusion when needed. This process is necessary because unhealthy red blood cells do not function properly and may lead to fatal side effects such as acute lung damage. Conventionally, image-based red blood cell analysis technology is used, which is an invasive method that destroys the three-dimensional structure of red blood cells as red blood cells are observed after staining. In addition, there are technical limitations in rapidly analyzing state changes such as three-dimensional shape, density change, and motility characteristics of red blood cells. To overcome this problem, a research team has developed an AI holography system that automatically extracts important information and inspects the quality of red blood cells. The new system is expected to become a key technology for enabling cleaner and healthier red blood cell injections to patients through accurate quality inspection of red blood cells stored for a certain period of time for blood transfusion.

Scientists at Daegu Gyeongbuk Institute of Science and Technology (DGIST, Daegu, Korea) had earlier developed 'holography-based red blood cell division and classification technology.' However, this requires a number of pre-processing algorithms before analysis, which takes a long time, and involves difficulties in performing accurate analysis and classification. In response, the team successfully developed an AI holography system that automatically inspects the quality of red blood cells stored for a certain time by combining the 3D structure image data of red blood cells obtained with holography technology and generative adversarial neural network technology.

If the developed technology is used, it will be possible to automatically extract important values ​​of judgment for red blood cells by applying the automatic red blood cell 3D structural image analysis algorithm and also check its quality. In particular, it is possible to test the quality of red blood cells precisely and simply as there is no need for invasive methods or pre-treatment procedures required by existing technologies. It is expected to be used as a core technology to help minimize the side effects of transfusion by injecting clean and healthy red blood cells to patients needing blood transfusions.

“The technology developed through this research is the source technology that can automatically analyze how red blood cells, stored for transfusion, change their three-dimensional shape depending on the storage period and determine whether stored red blood cells are healthy red blood cells that can be transfused,” said Professor Moon In-kyu of the Department of Robotics and Mechatronics Engineering at DGIST who led the research team. “It is expected that it will help minimize the occurrence of side effects after transfusion in the future as it can check the state of stored red blood cells more minutely and test whether the red blood cells are safe for the patient before transfusion.”

Related Links:
DGIST 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Hemoglobin Testing System
VARIANTnbs

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.